Ύπαρξη \nu ριζών

Για να αποδείξουμε ότι μια εξίσωση της μορφής f(x)=0 έχει τουλάχιστον \nu ρίζες σε ένα διάστημα (\alpha,\beta) χωρίζουμε το (\alpha,\beta) σε \nu κατάλληλα υποδιαστήματα, τα οποία να μην έχουν κοινά εσωτερικά σημεία και εφαρμόζουμε το Θεώρημα Bolzano για την f σε καθένα από τα διαστήματα αυτά.
Συνέχεια ανάγνωσης Ύπαρξη \nu ριζών

Απόδειξη μοναδικότητας ρίζας σε διάστημα

Για να αποδείξουμε ότι μια εξίσωση της μορφής f(x)=0 έχει μοναδική ρίζα στο (\alpha,\beta) εργαζόμαστε ως εξής:

* Με τη βοήθεια του Θεωρήματος Bolzano βρίσκουμε ότι υπάρχει μία τουλάχιστον ρίζα x_o\in (\alpha,\beta).
* Αποδεικνύουμε ότι η f είναι γνησίως μονότονη στο (\alpha, \beta), οπότε η παραπάνω ρίζα είναι μοναδική.
Συνέχεια ανάγνωσης Απόδειξη μοναδικότητας ρίζας σε διάστημα