Όλα τα άρθρα του/της Νίκος Διακόπουλος

https://www.linkedin.com/profile/view?id=AAMAAAjBCJMB6EeshfR3d4vb9v_yKk9oDICTDoo&authType=&authToken=&trk=mp-allpost-aut-name

ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΤΗΣ ΜΟΡΦΗΣ (f(x))^{g(x)}

Για κάθε πραγματικό αριθμό \alpha>0 ισχύει ότι: \alpha=e^{ln\alpha}
Μια συνάρτηση της μορφής f(x)=(g(x))^{h(x)} ορίζεται όταν: g(x)>0 και h(x)\in\mathbb{R}
Για να βρούμε την f'(x), γράφουμε τον τύπο της f(x) ως εξής:

    \begin{align*} f(x)&=(g(x))^{h(x)}\\\\ 	&=e^{ln[g(x)]^{h(x)}}\\\\ 	&=e^{h(x)lng(x)} \end{align*}

Οπότε έχουμε f'(x) = \Big(e^{^{h(x)lng(x)}}\Big)' =e^{^{h(x)lng(x)}}\cdot(h(x)lng(x))'
Συνέχεια ανάγνωσης ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΤΗΣ ΜΟΡΦΗΣ (f(x))^{g(x)}

ΥΠΟΛΟΓΙΣΜΟΣ ΟΡΙΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΙΣΟΔΥΝΑΜΟΥ ΟΡΙΣΜΟΥ ΤΗΣ ΠΑΡΑΓΩΓΟΥ

Δίνεται συνάρτηση f:\mathbb{R}\rightarrow\mathbb{R} παραγωγίσιμη στο 2 με f'(2)=1
Να υπολογίσετε τα όρια:

i) \displaystyle\lim_{h\to 0} \dfrac{f(2+4h)-f(2)}{h}

ii)\displaystyle\lim_{h\to 0}\dfrac{f(2+4h)-f(2-h)}{h}
Συνέχεια ανάγνωσης ΥΠΟΛΟΓΙΣΜΟΣ ΟΡΙΟΥ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΙΣΟΔΥΝΑΜΟΥ ΟΡΙΣΜΟΥ ΤΗΣ ΠΑΡΑΓΩΓΟΥ

ΥΠΟΛΟΓΙΣΜΟΣ ΟΡΙΟΥ ΑΠΟ ΓΝΩΣΤΗ ΠΑΡΑΓΩΓΟ

Δίνεται συνάρτηση f:\mathbb{R}\rightarrow\mathbb{R} παραγωγίσιμη στο 0 με f'(0)=2
Να υπολογίσετε τα όρια

i) \displaystyle\lim_{x \to 0}\dfrac{f(2x)-f(0)}{x}

ii)\displaystyle\lim_{x \to 0}\dfrac{f(7x)-f(3x)}{x}
Συνέχεια ανάγνωσης ΥΠΟΛΟΓΙΣΜΟΣ ΟΡΙΟΥ ΑΠΟ ΓΝΩΣΤΗ ΠΑΡΑΓΩΓΟ

ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΑΠΟ ΓΝΩΣΤΟ ΟΡΙΟ ΜΕ ΤΟ ΤΕΧΝΑΣΜΑ ΤΗΣ ΠΡΟΣΘΑΦΑΙΡΕΣΗΣ

Δίνεται συνάρτηση f:\mathbb{R}\rightarrow\mathbb{R} παραγωγίσιμη στο 2 για την οποία ισχύει:

\displaystyle\lim_{x \to 2}\frac{xf(x)-2f(2)}{x-2}=7 \quad και \,\displaystyle\lim_{x \to 2}\frac{x^2f(2)-4f(x)}{x-2}=-8

Να βρείτε τις τιμές f(2) και f'(2)
Συνέχεια ανάγνωσης ΥΠΟΛΟΓΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΑΠΟ ΓΝΩΣΤΟ ΟΡΙΟ ΜΕ ΤΟ ΤΕΧΝΑΣΜΑ ΤΗΣ ΠΡΟΣΘΑΦΑΙΡΕΣΗΣ