Αρχείο κατηγορίας Β Λυκείου

ΤΟ ΗΜΙΤΟΝΟ ΚΑΙ Η ΔΙΧΟΤΟΜΟΣ ΠΡΩΤΟΥ ΤΡΙΤΟΥ

ΤΟ ΗΜΙΤΟΝΟ ΚΑΙ Η ΔΙΧΟΤΟΜΟΣ ΠΡΩΤΟΥ ΤΡΙΤΟΥ

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΤΟ ΗΜΙΤΟΝΟ ΚΑΙ Η ΔΙΧΟΤΟΜΟΣ ΠΡΩΤΟΥ ΤΡΙΤΟΥ

ΚΟΙΝΑ ΣΗΜΕΙΑ ΜΕ ΤΗΝ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΤΗΣ ΠΑΡΑΒΟΛΗΣ

ΚΟΙΝΑ ΣΗΜΕΙΑ ΜΕ ΤΗΝ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΤΗΣ ΠΑΡΑΒΟΛΗΣ

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΚΟΙΝΑ ΣΗΜΕΙΑ ΜΕ ΤΗΝ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΤΗΣ ΠΑΡΑΒΟΛΗΣ

ΚΟΙΝΑ ΣΗΜΕΙΑ ΜΕ ΤΗΝ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΤΗΣ ΥΠΕΡΒΟΛΗΣ

ΚΟΙΝΑ ΣΗΜΕΙΑ ΜΕ ΤΗΝ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΤΗΣ ΥΠΕΡΒΟΛΗΣ

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΚΟΙΝΑ ΣΗΜΕΙΑ ΜΕ ΤΗΝ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΤΗΣ ΥΠΕΡΒΟΛΗΣ

ΣΗΜΕΙΑ ΣΥΜΜΕΤΡΙΚΑ ΩΣ ΠΡΟΣ ΤΗΝ Ψ=Χ

ΣΗΜΕΙΑ ΣΥΜΜΕΤΡΙΚΑ ΩΣ ΠΡΟΣ ΤΗΝ Ψ=Χ

Συμμετρική γραμμή C της C_f ως προς την ευθεία y = x.

\bullet Αν μία συνάρτηση f:\mathbb{A} \to \mathbb{R} είναι γνησίως μονότονη, τότε για κάθε y \in f(\mathbb{A}) υπάρχει μοναδικό x \in \mathbb{A} τέτοιο, ώστε f(x) = y.

Οπότε ορίζεται μία συνάρτηση ( με αντίστροφη διαδικασία,) g: f(\mathbb{A}) \to \mathbb{R} με την οποία κάθε y \in f(\mathbb{A}) αντιστοιχίζεται στο μοναδικό x \in \mathbb{A}, τέτοιο, ώστε f(x) = y.
Άρα:
g:f(\mathbb{A}) \to \mathbb{R}
y \to x = g(y), όπου f(x) = y.

Συνέχεια ανάγνωσης ΣΗΜΕΙΑ ΣΥΜΜΕΤΡΙΚΑ ΩΣ ΠΡΟΣ ΤΗΝ Ψ=Χ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΜΜΕΤΡΙΚΕΣ ΩΣ ΠΡΟΣ ΤΗΝ Ψ=Χ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΜΜΕΤΡΙΚΕΣ ΩΣ ΠΡΟΣ ΤΗΝ Ψ=Χ

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΣΥΜΜΕΤΡΙΚΕΣ ΩΣ ΠΡΟΣ ΤΗΝ Ψ=Χ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ

    1. Έστω οξεία γωνία ω. Πως ορίζεται το ημίτονο, συνημίτονο, η εφαπτόμενη και η συνεφαπτόμενη της γωνίας ω?
      ΑΠΑΝΤΗΣΗ
      Έστω γωνία ω. Συνέχεια ανάγνωσης ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ

ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ

ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ

  1.  Να αποδείξετε ότι \hm^2\grv+\syn^2\grv=1.
    Αν M(x, y) είναι το σημείο στο οποίο η τελική πλευρά της γωνίας \grv τέμνει τον τριγωνομετρικό κύκλο, τότε θα είναι:

    Η τετμημένη x= ημ ω και η τεταγμένη y =συν ω του σημείου M(x,y)

    Συνέχεια ανάγνωσης ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ

ΑΝΑΓΩΓΗ ΣΤΟ ΠΡΩΤΟ ΤΕΤΑΡΤΗΜΟΡΙΟ

ΑΝΑΓΩΓΗ ΣΤΟ ΠΡΩΤΟ ΤΕΤΑΡΤΗΜΟΡΙΟ

Συνέχεια ανάγνωσης ΑΝΑΓΩΓΗ ΣΤΟ ΠΡΩΤΟ ΤΕΤΑΡΤΗΜΟΡΙΟ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
Τύποι επίλυσης των τριγωνομετρικών εξισώσεων, ημιτόνου, συνημιτόνου, εφαπτομένης και συνεφαπτομένης.

Συνέχεια ανάγνωσης ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ