ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΕΥΘΕΙΑΣ ΜΕ ΓΝΩΣΤΗ ΑΠΟΣΤΑΣΗ ΑΠΟ ΣΗΜΕΙΟ
Συνέχεια ανάγνωσης ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΕΥΘΕΙΑΣ ΜΕ ΓΝΩΣΤΗ ΑΠΟΣΤΑΣΗ ΑΠΟ ΣΗΜΕΙΟ
ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΕΥΘΕΙΑΣ ΜΕ ΓΝΩΣΤΗ ΑΠΟΣΤΑΣΗ ΑΠΟ ΣΗΜΕΙΟ
Συνέχεια ανάγνωσης ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΕΥΘΕΙΑΣ ΜΕ ΓΝΩΣΤΗ ΑΠΟΣΤΑΣΗ ΑΠΟ ΣΗΜΕΙΟ
ΜΕΣΟΠΑΡΑΛΛΗΛΗ ΔΥΟ ΕΥΘΕΙΩΝ
Μεσοπαράλληλη δύο παράλληλων ευθειών και
είναι ο γεωμετρικός τόπος των σημείων του εππέδου που ισαπέχουν από τις
και
Για να βρούμε τη μεσοπαράλληλη δύο παράλληλων ευθειών, εργαζόμαστε με έναν από τους παρακάτω τρόπους:
ΔΙΧΟΤΟΜΟΣ ΓΩΝΙΑΣ ΔΥΟ ΕΥΘΕΙΩΝ
Διχοτόμος μιας γωνίας είναι ο γεωμετρικός τόπος των σημείων του επιπέδουν που ισαπέχουν από τις πλευρές της γωνίας.
Για να βρούμε τις διχοτόμους των γωνιών που σχηματίζουν δύο ευθείες, εργαζόμαστε ως εξής:
Το σημείο ανήκει στη διχοτόμο μιας γωνίας που σχηματίζουν δύο ευθείες
και
αν και μόνο αν:
ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΣΥΝΤΕΤΑΓΜΕΝΕΣ
ΕΛΑΧΙΣΤΗ ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΕΥΘΕΙΑΣ ΑΠΟ ΣΤΑΘΕΡΟ ΣΗΜΕΙΟ
Έστω μια ευθεία και
ένα σημείο εκτός αυτής.
Η ελάχιστη απόσταση που απέχει ένα σημείο (π.χ.
) της ευθείας
από το σημείο
ορίζεται ως η απόσταση της της ευθείας
από το σημείο
και είναι:
Συνέχεια ανάγνωσης ΕΛΑΧΙΣΤΗ ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΕΥΘΕΙΑΣ ΑΠΟ ΣΤΑΘΕΡΟ ΣΗΜΕΙΟ
ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ
Η εξίσωση
Θεώρημα
Κάθε ευθεία του επιπέδου έχει εξίσωση της μορφής:
και αντίστροφα, κάθε εξίσωση της μορφής (1) παριστάνει ευθεία γραμμή.
Απόδειξη
ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ ΠΟΥ ΔΙΕΡΧΟΝΤΑΙ ΑΠΟ ΤΟ ΙΔΙΟ ΣΗΜΕΙΟ
Για να αποδείξουμε ότι μια παραμετρική εξίσωση παριστάνει ευθείες που διέρχονατι από το ίδιο σημείο (ανεξάρτητο της παραμέτρου), εργαζόμαστε με έναν από τους τρόπους που ακολουθούν:
1ος τρόπος
Θεωρούμε
το κοινό σημείο.
Αντικαθιστούμε τις συντεταγμένες του στην εξίσωση.
Μετατρέπουμε την εξίσωση που προκύπτει σε πολυωνυμική με άγνωστο την παράμετρο.
Συνέχεια ανάγνωσης ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ ΠΟΥ ΔΙΕΡΧΟΝΤΑΙ ΑΠΟ ΤΟ ΙΔΙΟ ΣΗΜΕΙΟ