Αρχείο κατηγορίας ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

ΤΟ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΙΣΟΥΤΑΙ ΜΕ ΑΡΙΘΜΟ ΚΑΙ ΟΧΙ ΜΕ ΔΙΑΝΥΣΜΑ ΚΑΙ ΥΠΟΛΟΓΙΖΕΤΑΙ ΑΝ ΓΝΩΡΙΖΟΥΜΕ ΤΟ ΜΕΤΡΟ ΤΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΑΙ ΤΗ ΓΩΝΙΑ ΠΟΥ ΣΧΗΜΑΤΙΖΟΥΝ ΚΑΘΩΣ ΚΑΙ ΑΜΕΣΑ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΠΟΥ ΓΝΩΡΙΖΟΥΜΕ ΤΙΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΤΩΝ ΔΙΑΝΥΣΜΑΤΩΝ.

ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ


Εσωτερικό γινόμενο διανυσμάτων
Ορισμός
Ονομάζουμε εσωτερικό γινόμενο δύο μη μηδενικών διανυσμάτων \vec{\boldsymbol{α}} και \vec{\boldsymbol{\beta}}, και το συμβολίζουμε με \vec{\boldsymbol{α}} \cdot \vec{\boldsymbol{\beta}}, τον πραγματικό αριθμό:

    \[\vec{α} \cdot \vec{\beta}=\lvert{\vec{α}}\rvert \lvert{\vec{\beta}}\rvert \sigma \upsilon \nu \phi\]


Συνέχεια ανάγνωσης ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

ΑΝΑΛΥΤΙΚΗ ΕΚΦΡΑΣΗ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ

Αναλυτική έκφραση εσωτερικού γινομένου

Αν \vec{α}=(\mathrm{x_1},\mathrm{y_1}) και \vec{\beta}=(\mathrm{x_2},\mathrm{y_2}) δύο διανύσματα του Καρτεσιανού επιπέδου, τότε:

    \[\vec{α} \cdot \vec{\beta}=\mathrm{x_1}\mathrm{x_2}+\mathrm{y_1}\mathrm{y_2}\]

Δηλαδή:
Το εσωτερικό γινόμενο δύο διανυσμάτων είναι ίσο με το άθροισμα των γινομένων των ομωνύμων συντεταγμένων τους.

Συνέχεια ανάγνωσης ΑΝΑΛΥΤΙΚΗ ΕΚΦΡΑΣΗ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ

ΙΔΙΟΤΗΤΕΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ

Ιδιότητες εσωτερικού γινομένου

Για τα διανύσματα \vec{α},\vec{\beta} και \vec{\gamma} ισχύουν οι εξής ιδιότητες:

  1.  \color{violet}{(\lambda \vec{α}) \cdot \vec{\beta} = \vec{α} \cdot (\lambda \vec{\beta}) = \lambda (\vec{α} \cdot \vec{\beta}), \lambda \in \mathbb{R}}
  2.  \color{magenta}{\vec{α} \cdot (\vec{\beta + \gamma}) = \vec{α} \cdot \vec{\beta} + \vec{α} \cdot \vec{\gamma}}
  3.  \color{orange}{\vec{α} \perp \vec{\beta} \Leftrightarrow \lambda_{\vec{α}} \lambda_{\vec{\beta}} = -1, εφόσον \color{orange}{\vec{α}, \vec{\beta} \nparallel y'y}}

Συνέχεια ανάγνωσης ΙΔΙΟΤΗΤΕΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ

ΙΣΟΤΗΤΕΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ ΚΑΙ ΜΕΤΡΟΥ ΔΙΑΝΥΣΜΑΤΩΝ ΠΟΥ ΔΕΝ ΙΣΧΥΟΥΝ ΠΑΝΤΑ

Σχέσεις που δεν ισχύουν πάντα

Rendered by QuickLaTeX.com


ΛΥΣΗ

Συνέχεια ανάγνωσης ΙΣΟΤΗΤΕΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ ΚΑΙ ΜΕΤΡΟΥ ΔΙΑΝΥΣΜΑΤΩΝ ΠΟΥ ΔΕΝ ΙΣΧΥΟΥΝ ΠΑΝΤΑ

ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΚΑΙ ΑΠΟΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΚΑΙ ΑΠΟΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΚΑΙ ΑΠΟΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΚΑΙ ΚΑΘΕΤΑ ΔΙΑΝΥΣΜΑΤΑ

Κάθετα διανύσματα – Ορισμός και ιδιότητες εσωτερικού γινομένου}

Σε ασκήσεις που υπάρχει ως δεδομένο ή ως ζητούμενο ότι δύο μή μηδενικά διανύσματα είναι κάθετα. χρησιμοποιούμε την ισοδυναμία:

    \[\vec{α} \perp \vec{\beta} \Leftrightarrow \vec{α} \cdot \vec{\beta} = 0.\]

Συνέχεια ανάγνωσης ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΚΑΙ ΚΑΘΕΤΑ ΔΙΑΝΥΣΜΑΤΑ

ΚΑΘΕΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΜΕ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

Κάθετα διανύσματα – Αναλυτική έκφραση εσωτερικού γινομένου

Όταν δύο μή μηδενικά διανύσματα είναι κάθετα μεταξύ τους τότε το εσωτερικό τους γινόμενο είναι ίσο με μηδέν.

    \[\text{Αν:}\quad \vec{\alpha}=(x_{1}\, , \, y_{1}) \quad \text{και} \quad \vec{\beta}=(x_{2}\, , \, y_{2})\]

    \[\text{με}\quad \vec{\alpha} {\Large{\bot} \vec{\beta}\]

    \[\text{Τότε:} \quad \vec{\alpha} \cdot \vec{\beta} =0 \quad \text{οπότε} \quad x_{1}\cdot x_{2}+y_{1}\cdot y_{2} =0.\]

Συνέχεια ανάγνωσης ΚΑΘΕΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΜΕ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

ΔΙΑΝΥΣΜΑΤΑ ΜΕ ΙΣΑ ΜΕΤΡΑ

Ισότητα μέτρων

Όταν έχουμε ώς δεδομένο οτι δυο διανύσματα έχουν το ίδιο μέτρο τότε υψώνουμε στο τετράγωνο και κάνουμε χρήση της ιδιότητας:

    \[\lvert \vec{\nu} \rvert^{2} = \vec{\nu}^{2}.\]

Συνέχεια ανάγνωσης ΔΙΑΝΥΣΜΑΤΑ ΜΕ ΙΣΑ ΜΕΤΡΑ

ΜΕΤΡΟ ΓΡΑΜΜΙΚΟΥ ΣΥΝΔΥΑΣΜΟΥ ΔΥΟ ΔΙΑΝΥΣΜΑΤΩΝ

Υπολογισμός μέτρου της μορφής \vert \boldsymbol{\kappa \vec{α} + \lambda \vec{\beta}} \rvert

Αν για τα διανύσματα \vec{α}, \vec{\beta} γνωρίζουμε το μέτρο τους |\vec{α}|, |\vec{\beta}| και την γωνία τους (\widehat{\vec{α}, \vec{\beta}}), τότε μπορούμε να βρούμε ένα μέτρο της μορφής \lvert \kappa \vec{α} + \lambda \vec{\beta} \rvert
υψώνοντας το στο τετράγωνο και χρησιμοποιόντας την ιδιότητα \vec{α}^{2} = |\vec{α}|^{2}.

Συνέχεια ανάγνωσης ΜΕΤΡΟ ΓΡΑΜΜΙΚΟΥ ΣΥΝΔΥΑΣΜΟΥ ΔΥΟ ΔΙΑΝΥΣΜΑΤΩΝ

ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΑΠΟ ΓΡΑΜΜΙΚΟ ΣΥΝΔΥΑΣΜΟ

Σχέση της μορφής \boldsymbol{\kappa \vec{α} + \lambda \vec{\beta} + \mu \vec{\gamma} = \vec{0}}

Αν για τα διανύσματα \vec{α}, \vec{\beta} και \vec{\gamma} ισχύει μια σχέση της μορφής:

    \[\kappa \vec{α} + \lambda \vec{\beta} + \mu \vec{\gamma} = \vec{0}\quad \text{ με}\quad \kappa, \lambda, \mu \in \mathbb{R}\]

και γνωρίζουμε τα \lvert \vec{α} \rvert, \lvert \vec{\beta} \rvert και \lvert \vec{\gamma} \rvert, τότε μπορούμε να υπολογίζουμε καθένα από τα εσωτερικά γινόμενα \vec{α} \cdot \vec{\beta}, ~\vec{\beta} \cdot \vec{\gamma} και \vec{\gamma} \cdot \vec{α}.

Συνέχεια ανάγνωσης ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΑΠΟ ΓΡΑΜΜΙΚΟ ΣΥΝΔΥΑΣΜΟ