Αρχείο κατηγορίας ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ

ΚΥΡΤΟΤΗΤΑ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ ΕΦΑΠΤΟΜΕΝΗ

  • Αν η συνάρτηση f είναι κυρτή σε ένα διάστημα \Delta και (\epsilon): \quad y=\alpha x+\beta είναι η εφαπτομένη της C_f σε ένα σημείο της M(x_0,f(x_0), με x_0\in\Delta, τότε η C_f βρίσκεται πάνω από την (\epsilon), με εξαίρεση το σημείο επαφής. Δηλαδή για κάθε x\in\Delta ισχύει ότι

        \[f(x)\geq \alpha x+\beta.\]

  • Αν η συνάρτηση f είναι κοίλη σε ένα διάστημα \Delta και (\epsilon): \quad y=\alpha x+\beta είναι η εφαπτομένη της C_f σε ένα σημείο της M(x_0,f(x_0), με x_0\in\Delta, τότε η C_f βρίσκεται κάτω από την (\epsilon), με εξαίρεση το σημείο επαφής. Δηλαδή για κάθε x\in\Delta ισχύει ότι

        \[f(x)\leq \alpha x+\beta.\]

  • Συνέχεια ανάγνωσης ΚΥΡΤΟΤΗΤΑ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ ΕΦΑΠΤΟΜΕΝΗ

    ΚΥΡΤΟΤΗΤΑ ΚΑΙ ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΣΥΝΑΡΤΗΣΗΣ ΔΥΟ ΦΟΡΕΣ ΠΑΡΑΓΩΓΙΣΙΜΗΣ

    Έστω μια συνάρτηση f η οποία είναι δύο φορές παραγωγίσιμη σε ένα διάστημα \Delta.
    Για να είναι η f κυρτή (αντίστοιχα κοίλη) στο \Delta αρκεί να ισχύει f''(x)\geq0 (αντίστοιχα f''(x)\leq0) για κάθε x\in\Delta και η ισότητα f''(x)=0 να ισχύει για διακεκριμένες τιμές του x.
    Συνέχεια ανάγνωσης ΚΥΡΤΟΤΗΤΑ ΚΑΙ ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΣΥΝΑΡΤΗΣΗΣ ΔΥΟ ΦΟΡΕΣ ΠΑΡΑΓΩΓΙΣΙΜΗΣ

    ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΚΑΙ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ ΔΥΟ ΦΟΡΕΣ ΠΑΡΑΓΩΓΙΣΙΜΗΣ

    Έστω μια συνάρτηση f δύο φορές παραγωγίσιμη σε ένα διάστημα \Delta, της οποίας ο τύπος περιέχει μια παράμετρο.
    Αν θέλουμε να βρούμε τις τιμές της παραμέτρου, ώστε η γραφική παράστσταση, C_f, να έχει σημείο καμπής στο x_0, τότε απαιτούμε να ισχύει

        \[f''(x_0)=0.\]

    Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΠΑΡΑΜΕΤΡΩΝ ΚΑΙ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ ΔΥΟ ΦΟΡΕΣ ΠΑΡΑΓΩΓΙΣΙΜΗΣ

    ΚΥΡΤΟΤΗΤΑ ΚΑΙ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΕ ΣΥΝΑΡΤΗΣΗ ΠΟΛΛΑΠΛΟΥ ΤΥΠΟΥ

    Έστω μια συνάρτηση f πολλαπλού τύπου η οποία αλλάζει τύπο στο x_0. Για να μελετήσουμε την f ως προς την κυρτότητα και τα σημεία καμπής, εργαζόμαστε ως εξής:
    Συνέχεια ανάγνωσης ΚΥΡΤΟΤΗΤΑ ΚΑΙ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΕ ΣΥΝΑΡΤΗΣΗ ΠΟΛΛΑΠΛΟΥ ΤΥΠΟΥ

    ΣΗΜΕΙΑ ΚΑΜΠΗΣ

    Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα (\alpha,\beta), με εξαίρεση ίσως ένα σημείο τπυ x_0. Αν:

  • Η f είναι κυρτή στο (\alpha,x_0) και κοίλη στο (x_0,\beta), ή αντιστρόφως, και
  • Η C_f έχει εφαπτομένη στο σημείο A(x_0,f(x_0))
  • Τότε το σημείο A(x_0,f(x_0)) ονομάζεται σημείο καμπής της γραφικής παράστασης της f.
    Συνέχεια ανάγνωσης ΣΗΜΕΙΑ ΚΑΜΠΗΣ

    ΚΥΡΤΗ – ΚΟΙΛΗ ΣΥΝΑΡΤΗΣΗ

    Έστω μια συνάρτηση f συνεχής σε ένα διάστημα \Delta και παραγωγίσιμη στο εσωτερικό του \Delta. Θα λέμε ότι:

  • Η συνάρτηση f στρέφει τα κοίλα προς τα άνω ή είναι κυρτή στο \Delta αν η f' είναι γνησίως αύξουσα στο εσωτερικό του \Delta.
  • Η συνάρτηση f στρέφει τα κοίλα προς τα κάτω ή είναι κοίλη στο \Delta αν η f' είναι γνησίως φθίνουσα στο εσωτερικό του \Delta.
  • ΘΕΩΡΗΜΑ
    Έστω μια συνάρτηση συνεχής σε ένα διάστημα \Delta και δύο φορές παραγωγίσιμη στο εσωτερικό του \Delta.

  • Αν f''(x)>0 για κάθε εσωτερικό σημείο x του \Delta, τότε η f είναι κυρτή στο \Delta.
  • Αν f''(x)<0 για κάθε εσωτερικό σημείο x του \Delta, τότε η f είναι κοίλη στο \Delta.
  • Συνέχεια ανάγνωσης ΚΥΡΤΗ – ΚΟΙΛΗ ΣΥΝΑΡΤΗΣΗ