Αρχείο κατηγορίας ΣΥΝΕΠΕΙΕΣ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΙΣΕΣ ΠΑΡΑΓΩΓΟΥΣ ΣΕ ΕΝΩΣΗ ΔΙΑΣΤΗΜΑΤΩΝ

Αν για δύο συναρτήσεις f και g ισχύει ότι:

    \[f'(x)=g'(x)\]

για κάθε x\in\Delta_1\cup\Delta_2\cup... όπου \Delta_1, \Delta_2,... διαστήματα, τότε είναι:

    \[f(x)= \left\{ \begin{tabular}{ll} $g(x)+c_1, \quad \text{αν} \quad x\in\Delta_1$ \\ $g(x)+c_2, \quad \text{αν} \quad x\in\Delta_2$ \\ $\vdots$ \end{tabular} \right.  \]

Συνέχεια ανάγνωσης ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΙΣΕΣ ΠΑΡΑΓΩΓΟΥΣ ΣΕ ΕΝΩΣΗ ΔΙΑΣΤΗΜΑΤΩΝ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΙΣΕΣ ΠΑΡΑΓΩΓΟΥΣ ΣΤΟ ΙΔΙΟ ΔΙΑΣΤΗΜΑ

Έστω δύο συναρτήσεις f,g ορισμένες σε ένα διάστημα \Delta. Αν:

  • Οι f,g είναι συνεχείς στο \Delta και
  • f'(x)=g'(x) για κάθε εσωτερικό σημείο x του \Delta
  • Τότε υπάρχει σταθερά c τέτοιο ώστε για κάθε x\in\Delta να ισχύει:

        \[f(x)=g(x)+c\]

    Συνέχεια ανάγνωσης ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΙΣΕΣ ΠΑΡΑΓΩΓΟΥΣ ΣΤΟ ΙΔΙΟ ΔΙΑΣΤΗΜΑ

    ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ ΣΕ ΕΝΩΣΗ ΔΙΑΣΤΗΜΑΤΩΝ

    Αν για μια συνάρτηση f ισχύει ότι: f'(x)=0 για κάθε x\in\Delta_1\cup\Delta_2\cup... όπου \Delta_1,\Delta_2,... διαστήματα, τότε είναι:

        \[f(x)= \left\{ \begin{tabular}{ll} $c_1, \quad \text{αν} \quad x\in\Delta_1$ \\ $c_2, \quad \text{αν} \quad x\in\Delta_2$ \\ $\vdots$ \end{tabular} \right. \]

    Συνέχεια ανάγνωσης ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ ΣΕ ΕΝΩΣΗ ΔΙΑΣΤΗΜΑΤΩΝ

    ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ

    Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα \Delta. Αν:

    • Η f είναι συνεχής στο \Delta και
    • f'(x) = 0 για κάθε εσωτερικό σημείο x του \Delta

    τότε η f είναι σταθερή σε όλο το διάστημα \Delta.

    Για τις ασκήσεις, για να αποδείξουμε ότι μια συνάρτηση f είναι σταθερή σε ένα διάστημα \Delta, εργαζόμαστε ως εξής:

    • Αποδεικνύουμε ότι η f είναι συνεχής στο \Delta
    • Αποδεικνύουμε ότι

          \[f'(x)=0\]

      για κάθε εσωτερικό σημείο x \in \Delta.

    Συνέχεια ανάγνωσης ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ