Αρχείο κατηγορίας ΘΕΩΡΗΜΑ BOLZANO

ΕΞΙΣΩΣΗ ΜΕ ΠΑΡΟΝΟΜΑΣΤΕΣ

Αν η εξίσωση περιέχει παρονομαστές και η συνάρτηση δεν ορίζεται σε κάποιο από τα άκρα του διαστήματος, τότε πρώτα κάνουμε απαλοιφή παρονομαστών και μετά θέτουμε συνάρτηση f(x). Στο τέλος αποδεικνύουμε ότι η ρίζα της f(x) είναι και ρίζα της εξίσωσης.

Συνέχεια ανάγνωσης ΕΞΙΣΩΣΗ ΜΕ ΠΑΡΟΝΟΜΑΣΤΕΣ

ΘΕΩΡΗΜΑ BOLZANO

Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα \left[ \alpha ,\beta \right]. Αν ισχύει ότι:
* Η f είναι συνεχής στο \left[ \alpha , \beta \right] και
* f(\alpha) \cdot f(\beta)<0
Τότε υπάρχει ένα τουλάχιστον x_{o} \in \left( \alpha ,\beta \right) τέτοιο ώστε:

    \[f(x_{o})=0\]

Δηλαδή υπάρχει μία τουλάχιστον ρίζα της εξίσωσης f(x)=0 στο ανοιχτό διάστημα \left( \alpha ,\beta \right)
Συνέχεια ανάγνωσης ΘΕΩΡΗΜΑ BOLZANO

ΘΕΩΡΗΜΑ BOLZANO ΕΦΑΡΜΟΓΗ

Δίνεται συνεχής συνάρτηση f:\mathbb{R}\to\mathbb{R} της οποίας η γραφική παράσταση διέρχεται από τα σημεία A(1,2) και B(3,1). Να αποδείξετε ότι η εξίσωση f(x)=x έχει μία τουλάχιστον ρίζα στο διάστημα (1,3).

Συνέχεια ανάγνωσης ΘΕΩΡΗΜΑ BOLZANO ΕΦΑΡΜΟΓΗ