Αρχείο κατηγορίας ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ

ΕΚΦΡΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΩΣ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ

Παράδειγμα.
Να εκφράσετε τη συνάρτηση f, ώς σύνθεση δύο ή περισσοτέρων συναρτήσεων, αν ισχύει:
i.) \quad f(x) = e^{-x} \quad ii.) \quad f(x) = \syn^{3}(2x)+1
iii.) f(x) = e^{g(x)}-g^{3}(x)-\hm g(x) όπου g:\rr \to\rr.
Συνέχεια ανάγνωσης ΕΚΦΡΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΩΣ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ

ΑΠΟΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΑΠΟΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ

 

Όταν γνωρίζουμε τις συναρτήσεις (f \circ g)(x) και g(x), τότε για να βρούμε τη συνάρτηση f(x) εργαζόμαστε ως εξής:

  • Θέτουμε όπου g(x)=u.
  • Λύνουμε την παραπάνω σχέση ως προς x.
  • Αντικαθιστούμε το x που βρήκαμε στον τύπο f(g(x).)

Συνέχεια ανάγνωσης ΑΠΟΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΣΥΝΘΕΣΗ ΔΙΚΛΑΔΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

Παράδειγμα.2
Δίνονται οι συναρτήσεις

    \[f(x)= 			      \left\{ 			      \begin{tabular}{ll} 				      $x-2,  \quad x \leq 0$ \\ 				      $x+2, \quad x>0$ \\ 			      \end{tabular} 			      \right. \]

και

    \[g(x)= 			      \left\{ 			  \begin{tabular}{ll} 				      $1-x,  \quad x<1$ \\ 				      $2-x, \quad x \geq 1$ \\ 			      \end{tabular} 			      \right. \]

Να ορίσετε τη f \circ g.
Συνέχεια ανάγνωσης ΣΥΝΘΕΣΗ ΔΙΚΛΑΔΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ

ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ

Έστω f και g δύο συναρτήσεις με πεδία ορισμού A_{f} και A_{g} αντίστοιχα. Αν ισχύει f(A)\cap A_{g} \notin \emptyset, τότε ονομάζουμε σύνθεση της f με τη g και τη συμβολίζουμε με g \circ f τη συνάρτηση που έχει:

  • Πεδίο ορισμού το σύνολο A_{g \circ f}=\{x\in A_{f} \quad / \quad f(x) \in A_{g}\}
  • Και τύπο (g \circ f)(x)=g(f(x)).

Συνέχεια ανάγνωσης ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ