ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΣΥΝΑΡΤΗΣΗΣ

Όταν γνωρίζουμε μόνο τον τύπο μιας συνάρτησης f, τότε το πεδίο ορισμού της είναι το ευρύτερο υποσύνολο του \mathbb{R} στο οποίο ο τύπος της f(x) έχει νόημα πραγματικού αριθμού.
Για τις ασκήσεις, γενικά το πεδίο ορισμού μιας συνάρτησης θεωρούμε όλο το \mathbb{R} εκτός απο τις παρακάτω περιπτώσεις που πρέπει να πάρουμε τους σχετικούς περιορισμούς.

  • f(x)=\dfrac{P(x)}{Q(x)} τότε θα πρέπει Q(x) \neq 0
  • f(x)=\sqrt[\nu]{P(x)}, \nu \in \mathbb{N}^*- \{1\} τότε θα πρέπει P(x) \geq 0
  • f(x)=ln(P(x)) τότε θα πρέπει P(x)>0
  • f(x)=\epsilon\phi(P(x)) τότε θα πρέπει P(x) \neq \kappa\pi+\dfrac{\pi}{2}, \kappa \in \mathbb{Z}
  • f(x)=\sigma\phi(P(x)) τότε θα πρέπει P(x) \neq \kappa\pi, \kappa \in \mathbb{Z}
  • f(x)=(P(x))^{Q(x)} τότε θα πρέπει P(x)>0

Όπου P(x), \, \, Q(x) πολυώνυμα του x\in \rr.

Συνέχεια ανάγνωσης ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΑΜΕΡΙΣΗ ΔΙΑΣΤΗΜΑΤΟΣ ΣΕ ΑΝΙΣΑ ΥΠΟΔΙΑΣΤΗΜΑΤΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΘΜΤ

Όταν μας ζητούν να αποδείξουμε ότι υπάρχουν \xi_1, \xi_2,...,\xi_{\nu}\in(\alpha,\beta) για τα οποία ισχύει

    \[\kappa_1f'(\xi_1)+\kappa_2f'(\xi_2)+...+\kappa_{\nu}f'(\xi_{\nu})=\lambda\]

τότε πρέπει να χωρίσουμε το διάστημα [\alpha,\beta] σε \nu υποδιαστήματα και εφαρμόζουμε το Θ.Μ.Τ σε καθένα από αυτά. Ο χωρισμός θα πρέπει να γίνει ως εξής:
Έστω \delta=\beta-\alpha το πλάτος του διαστήματος [\alpha,\beta] και

    \[\kappa=\kappa_1+\kappa_2+...+\kappa_\nu\]

Θεωρούμε τα υποδιαστήματα [\alpha,x_1],[x_1,x_2],...,[x_{\nu-1},\beta] με αντίστοιχα πλάτη

    \[\delta_1=\frac{\kappa_1}{\kappa}\cdot\delta, \delta_2=\frac{\kappa_2}{\kappa}\cdot\delta,...,\delta_{\nu}=\frac{\kappa_\nu}{\kappa}\cdot\delta\]

Συνέχεια ανάγνωσης ΔΙΑΜΕΡΙΣΗ ΔΙΑΣΤΗΜΑΤΟΣ ΣΕ ΑΝΙΣΑ ΥΠΟΔΙΑΣΤΗΜΑΤΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΘΜΤ

ΔΙΑΜΕΡΙΣΗ ΔΙΑΣΤΗΜΑΤΟΣ ΣΕ ΙΣΑ ΥΠΟΔΙΑΣΤΗΜΑΤΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΘΜΤ

Περίπτωση 1
Όταν μας ζητούν να αποδείξουμε ότι υπάρχουν \xi_1,\xi_2,\xi_3,...,\xi_{\nu}\in(\alpha,\beta) για τα οποία ισχύει
f'(\xi_1)+f'(\xi_2)+...+f'(\xi_{\nu})=\lambda τότε πρέπει να χωρίσουμε το διάστημα [\alpha,\beta] σε \nu υποδιαστήματα και εφαρμόζουμε το Θ.Μ.Τ σε καθένα πο αυτά.

  • Αν έχουμε δεδομένα για τιμές της f στο [\alpha,\beta], τότε αυτές μας δείχνουν με ποιον τρόπο θα χωρίσουμε το [\alpha,\beta] σε υποδιαστήματα.
  • Συνέχεια ανάγνωσης ΔΙΑΜΕΡΙΣΗ ΔΙΑΣΤΗΜΑΤΟΣ ΣΕ ΙΣΑ ΥΠΟΔΙΑΣΤΗΜΑΤΑ ΓΙΑ ΤΗΝ ΕΦΑΡΜΟΓΗ ΤΟΥ ΘΜΤ

    ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

    Αν μια συνάρτηση f είναι:

  • Συνεχής στο κλειστό διάστημα [\alpha,\beta]
  • Παραγωγίσιμη στο ανοιχτό διάστημα (\alpha,\beta)
  • Τότε υπάρχει ένα τουλάχιστον \xi\in(\alpha,\beta) τέτοιο ώστε:

        \[f'(\xi)=\frac{f(\beta)-f(\alpha)}{\beta-\alpha}\]

    Συνέχεια ανάγνωσης ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

    ΤΕΧΝΑΣΜΑΤΑ ΑΝΤΙΠΑΡΑΓΩΓΙΣΗΣ ΓΙΝΟΜΕΝΟΥ

    Όταν θέλουμε να αποδείξουμε ότι μια εξίσωση της μορφής

        \[f'(x)+g(x)f(x)=0 \quad (1)\]

    έχει μία τουλάχιστον λύση σε ένα διάστημα (\alpha,\beta) τότε:

  • Βρίσκουμε μια αρχική συνάρτηση G της g για την οποία ισχύει

        \[G'(x)=g(x)\]

  • Πολλαπλασιάζουμε την εξίσωση (1) με e^{G(x)} και ισοδύναμα έχουμε:
  •     \begin{align*} 		&f'(x)+g(x)f(x)=0  \Leftrightarrow\\\\ &f'(x)+G'(x)f(x)=0  \Leftrightarrow\\\\ &e^{G(x)}\Big( f'(x)+G'(x)f(x)\Big) =e^{G(x)}\cdot 0 \Leftrightarrow\\\\ 		&e^{G(x)}f'(x)+G'(x)e^{G(x)}f(x)=0 \Leftrightarrow\\\\ 		&e^{G(x)}f'(x)+(e^{G(x)})'f(x)=0 \Leftrightarrow\\\\ 		&(e^{G(x)}f(x))'=0 	\end{align*}

    και στη συνέχεια εφαρμόζουμε το θεώρημα του Rolle για την

        \[h(x)=e^{G(x)}f(x) \quad \text{στο} \quad [\alpha,\beta]\]

    Συνέχεια ανάγνωσης ΤΕΧΝΑΣΜΑΤΑ ΑΝΤΙΠΑΡΑΓΩΓΙΣΗΣ ΓΙΝΟΜΕΝΟΥ

    ΚΑΝΟΝΕΣ ΑΝΤΙΠΑΡΑΓΩΓΙΣΗΣ

    ΚΑΝΟΝΕΣ ΑΝΤΙΠΑΡΑΓΩΓΙΣΗΣ

    Στην προσπάθεια να βρούμε την αρχική μιας συνάρτησης πρέπει να ελέγχουμε αν εμφανίζεται παράγωγος γινομένου ή πηλίκου ή παράγωγος σύνθετης συνάρτησης.

    *f'(x)g(x)+f(x)g'(x)=\Big(f(x)g(x)\Big)'

    *f(x)+xf'(x)=(xf(x))'

    *\dfrac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}=\Big(\dfrac{f(x)}{g(x)}\Big)' με g(x)\neq 0

    *\dfrac{f'(x)+xf'(x)}{x^2}=\Big(\dfrac{f(x)}{x}\Big)' x\neq 0

    *f^{\nu}(x)f'(x)=\Big(\dfrac{f^{\nu+1}(x)}{\nu+1}\Big)'

    *x^{\nu}=\Big(\frac{x^{\nu+1}}{\nu+1}\Big)'

    *e^{f(x)}f'(x)=\Big(e^{f(x)}\Big)'

    *\dfrac{f'(x)}{f(x)}=\Big(ln|f(x)|\Big)' f(x)\neq 0
    Συνέχεια ανάγνωσης ΚΑΝΟΝΕΣ ΑΝΤΙΠΑΡΑΓΩΓΙΣΗΣ

    ΥΠΑΡΞΗ ΑΡΙΘΜΟΥ ΣΕ ΑΝΟΙΚΤΟ ΔΙΑΣΤΗΜΑ ΠΟΥ ΙΚΑΝΟΠΟΙΕΙ ΜΙΑ ΣΧΕΣΗ, ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ROLLE

    Για να αποδείξουμε ότι υπάρχει \xi\in(\alpha,\beta), ώστε να ισχύει μια σχέση, εργαζόμαστε ως εξής:

  • Θέτουμε στη θέση του \xi το x και μεταφέρουμε όλους τους όρους στο πρώτο μέλος, ώστε να έχουμε μια εξίσωση της μορφής

        \[g(x)=0\]

  • Αν δεν εφαρμόζεται το θεώρημα Bolzano για τη g στο [\alpha,\beta], τότε βρίσκουμε μια αρχική συνάρτηση της g, για την οποία ισχύει

        \[G'(x)=g(x)\]

  • Εφαρμόζουμε το θεώρημα του Rolle για τη G στο [\alpha,\beta] αν ικανοποιούνται οι προυποθέσεις του.
  • Συνέχεια ανάγνωσης ΥΠΑΡΞΗ ΑΡΙΘΜΟΥ ΣΕ ΑΝΟΙΚΤΟ ΔΙΑΣΤΗΜΑ ΠΟΥ ΙΚΑΝΟΠΟΙΕΙ ΜΙΑ ΣΧΕΣΗ, ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ROLLE

    ΥΠΑΡΞΗ ΡΙΖΑΣ ΕΞΙΣΩΣΗΣ ΜΕ ΑΓΝΩΣΤΗ ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ

    Αν θέλουμε να αποδείξουμε ότι μια εξίσωση της μορφής

        \[f(x)=0\]

    έχει μία τουλάχιστον λύση στο διάστημα \Delta και
    δεν εφαρμόζεται για την f το θεώρημα Bolzano, τότε μπορούμε να εργαστούμε ως εξής:

    * Βρίσκουμε μια αρχική συνάρτηση της f για την οποία ισχύει

        \[F'(x)=f(x)\]

    * Εφαρμόζουμε το θεώρημα του Rolle για την f στο διάστημα \Delta, αν ικανοποιούνται οι προυποθέσεις του.
    Συνέχεια ανάγνωσης ΥΠΑΡΞΗ ΡΙΖΑΣ ΕΞΙΣΩΣΗΣ ΜΕ ΑΓΝΩΣΤΗ ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ

    ΔΙΑΔΟΧΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ROLLE

    Παράδειγμα.
    Δίνεται συνάρτηση f:\rr\rightarrow\rr δύο φορές παραγωγίσιμη για την οποία ισχύει

        \[f(2)=f(3)=f(4)\]

    Να αποδείξετε ότι υπάρχει ένα τουλάχιστον \xi\in(2,4) τέτοιο ώστε

        \[f''(\xi)=0\]

    Συνέχεια ανάγνωσης ΔΙΑΔΟΧΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ROLLE

    ΘΕΩΡΗΜΑ ROLLE

    Αν για μια συνάρτηση f ισχύουν:

  • Συνεχής στο κλειστό διάστημα [\alpha,\beta]
  • Παραγωγίσιμη στο ανοικτό διάστημα (\alpha,\beta) και
  • f(\alpha)=f(\beta).
    Τότε υπάρχει ένα τουλάχιστον \xi\in(\alpha,\beta) τέτοιο ώστε f'(\xi)=0
    Συνέχεια ανάγνωσης ΘΕΩΡΗΜΑ ROLLE
  • Ένας ιστότοπος για τα Μαθηματικά

    Wordpress Social Share Plugin powered by Ultimatelysocial