ΥΠΑΡΞΗ ρίζας σε κλειστο διάστημα [a,b]

Για να αποδείξουμε ότι υπάρχει x_o\in[\alpha,\beta] που ικανοποιεί μία ισότητα, εργαζόμαστε ως εξής:
* Μεταφέρουμε όλους τους όρους της ισότητας στο πρώτο μέλος, θέτουμε όπου x_o το x και ονομάζουμε h(x) τη συνάρτηση στο πρώτο μέλος.
* Αποδεικνύουμε ότι η h είναι συνεχής στο [\alpha ,\beta] και διαπιστώνουμε ότι h(\alpha)\cdot h(\beta)\leq 0.
* Διακρίνουμε τις περιπτώσεις:
1) Αν: h(\alpha)\cdot h(\beta)=0\Rightarrow h(\alpha)=0\quad ή \quad h(\beta)=0
Οπότε είναι x_o=\alpha \quad ή \quad x_o=\beta
2) Αν h(\alpha)\cdot h(\beta)<0, τότε από το Θεώρημα Bolzano υπάρχει ένα τουλάχιστον x_o\in(\alpha , \beta), ώστε h(x_o)=0.
* Τελικά σε κάθε περίπτωση υπάρχει x_o\in [\alpha,\beta] ώστε h(x_o)=0.
Συνέχεια ανάγνωσης ΥΠΑΡΞΗ ρίζας σε κλειστο διάστημα [a,b]

ΕΞΙΣΩΣΗ ΜΕ ΠΑΡΟΝΟΜΑΣΤΕΣ

Αν η εξίσωση περιέχει παρονομαστές και η συνάρτηση δεν ορίζεται σε κάποιο από τα άκρα του διαστήματος, τότε πρώτα κάνουμε απαλοιφή παρονομαστών και μετά θέτουμε συνάρτηση f(x). Στο τέλος αποδεικνύουμε ότι η ρίζα της f(x) είναι και ρίζα της εξίσωσης.

Συνέχεια ανάγνωσης ΕΞΙΣΩΣΗ ΜΕ ΠΑΡΟΝΟΜΑΣΤΕΣ

ΘΕΩΡΗΜΑ BOLZANO

Έστω μια συνάρτηση f, ορισμένη σε ένα κλειστό διάστημα \left[ \alpha ,\beta \right]. Αν ισχύει ότι:
* Η f είναι συνεχής στο \left[ \alpha , \beta \right] και
* f(\alpha) \cdot f(\beta)<0
Τότε υπάρχει ένα τουλάχιστον x_{o} \in \left( \alpha ,\beta \right) τέτοιο ώστε:

    \[f(x_{o})=0\]

Δηλαδή υπάρχει μία τουλάχιστον ρίζα της εξίσωσης f(x)=0 στο ανοιχτό διάστημα \left( \alpha ,\beta \right)
Συνέχεια ανάγνωσης ΘΕΩΡΗΜΑ BOLZANO

ΘΕΩΡΗΜΑ BOLZANO ΕΦΑΡΜΟΓΗ

Δίνεται συνεχής συνάρτηση f:\mathbb{R}\to\mathbb{R} της οποίας η γραφική παράσταση διέρχεται από τα σημεία A(1,2) και B(3,1). Να αποδείξετε ότι η εξίσωση f(x)=x έχει μία τουλάχιστον ρίζα στο διάστημα (1,3).

Συνέχεια ανάγνωσης ΘΕΩΡΗΜΑ BOLZANO ΕΦΑΡΜΟΓΗ

Ένας ιστότοπος για τα Μαθηματικά

Wordpress Social Share Plugin powered by Ultimatelysocial