Αρχείο ετικέτας ΑΝΤΙΠΑΡΑΓΩΓΙΣΗ

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΕΠΑΝΑΛΗΨΗ ΘΕΜΑ 14

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΕΠΑΝΑΛΗΨΗ ΘΕΜΑ 14

Rendered by QuickLaTeX.com

ΛΥΣΗ
Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΕΠΑΝΑΛΗΨΗ ΘΕΜΑ 14

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ 12

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ 12

Rendered by QuickLaTeX.com

ΛΥΣΗ
Συνέχεια ανάγνωσης ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ 12

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΘΜΤ ΘΕΜΑ 1

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΗΜΑ ROLLE ΘΕΜΑ 1

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΙΣΕΣ ΠΑΡΑΓΩΓΟΥΣ ΣΕ ΕΝΩΣΗ ΔΙΑΣΤΗΜΑΤΩΝ

Αν για δύο συναρτήσεις f και g ισχύει ότι:

    \[f'(x)=g'(x)\]

για κάθε x\in\Delta_1\cup\Delta_2\cup... όπου \Delta_1, \Delta_2,... διαστήματα, τότε είναι:

    \[f(x)= \left\{ \begin{tabular}{ll} $g(x)+c_1, \quad \text{αν} \quad x\in\Delta_1$ \\ $g(x)+c_2, \quad \text{αν} \quad x\in\Delta_2$ \\ $\vdots$ \end{tabular} \right.  \]

Συνέχεια ανάγνωσης ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΙΣΕΣ ΠΑΡΑΓΩΓΟΥΣ ΣΕ ΕΝΩΣΗ ΔΙΑΣΤΗΜΑΤΩΝ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΙΣΕΣ ΠΑΡΑΓΩΓΟΥΣ ΣΤΟ ΙΔΙΟ ΔΙΑΣΤΗΜΑ

Έστω δύο συναρτήσεις f,g ορισμένες σε ένα διάστημα \Delta. Αν:

  • Οι f,g είναι συνεχείς στο \Delta και
  • f'(x)=g'(x) για κάθε εσωτερικό σημείο x του \Delta
  • Τότε υπάρχει σταθερά c τέτοιο ώστε για κάθε x\in\Delta να ισχύει:

        \[f(x)=g(x)+c\]

    Συνέχεια ανάγνωσης ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΙΣΕΣ ΠΑΡΑΓΩΓΟΥΣ ΣΤΟ ΙΔΙΟ ΔΙΑΣΤΗΜΑ

    ΤΕΧΝΑΣΜΑΤΑ ΑΝΤΙΠΑΡΑΓΩΓΙΣΗΣ ΓΙΝΟΜΕΝΟΥ

    Όταν θέλουμε να αποδείξουμε ότι μια εξίσωση της μορφής

        \[f'(x)+g(x)f(x)=0 \quad (1)\]

    έχει μία τουλάχιστον λύση σε ένα διάστημα (\alpha,\beta) τότε:

  • Βρίσκουμε μια αρχική συνάρτηση G της g για την οποία ισχύει

        \[G'(x)=g(x)\]

  • Πολλαπλασιάζουμε την εξίσωση (1) με e^{G(x)} και ισοδύναμα έχουμε:
  •     \begin{align*} 		&f'(x)+g(x)f(x)=0  \Leftrightarrow\\\\ &f'(x)+G'(x)f(x)=0  \Leftrightarrow\\\\ &e^{G(x)}\Big( f'(x)+G'(x)f(x)\Big) =e^{G(x)}\cdot 0 \Leftrightarrow\\\\ 		&e^{G(x)}f'(x)+G'(x)e^{G(x)}f(x)=0 \Leftrightarrow\\\\ 		&e^{G(x)}f'(x)+(e^{G(x)})'f(x)=0 \Leftrightarrow\\\\ 		&(e^{G(x)}f(x))'=0 	\end{align*}

    και στη συνέχεια εφαρμόζουμε το θεώρημα του Rolle για την

        \[h(x)=e^{G(x)}f(x) \quad \text{στο} \quad [\alpha,\beta]\]

    Συνέχεια ανάγνωσης ΤΕΧΝΑΣΜΑΤΑ ΑΝΤΙΠΑΡΑΓΩΓΙΣΗΣ ΓΙΝΟΜΕΝΟΥ

    ΚΑΝΟΝΕΣ ΑΝΤΙΠΑΡΑΓΩΓΙΣΗΣ

    Στην προσπάθεια να βρούμε την αρχική μιας συνάρτησης πρέπει να ελέγχουμε αν εμφανίζεται παράγωγος γινομένου ή πηλίκου ή παράγωγος σύνθετης συνάρτησης.

    *f'(x)g(x)+f(x)g'(x)=\Big(f(x)g(x)\Big)'

    *f(x)+xf'(x)=(xf(x))'

    *\dfrac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}=\Big(\dfrac{f(x)}{g(x)}\Big)' g(x)\neq 0

    *\dfrac{f'(x)+xf'(x)}{x^2}=\Big(\dfrac{f(x)}{x}\Big)' x\neq 0

    *f^{\nu}(x)f'(x)=\Big(\dfrac{f^{\nu+1}(x)}{\nu+1}\Big)'

    *x^{\nu}=\Big(\frac{x^{\nu+1}}{\nu+1}\Big)'

    *e^{f(x)}f'(x)=\Big(e^{f(x)}\Big)'

    *\dfrac{f'(x)}{f(x)}=\Big(ln|f(x)|\Big)' f(x)\neq 0
    Συνέχεια ανάγνωσης ΚΑΝΟΝΕΣ ΑΝΤΙΠΑΡΑΓΩΓΙΣΗΣ

    ΥΠΑΡΞΗ ΡΙΖΑΣ ΕΞΙΣΩΣΗΣ ΜΕ ΑΓΝΩΣΤΗ ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ

    Αν θέλουμε να αποδείξουμε ότι μια εξίσωση της μορφής

        \[f(x)=0\]

    έχει μία τουλάχιστον λύση στο διάστημα \Delta και
    δεν εφαρμόζεται για την f το θεώρημα Bolzano, τότε μπορούμε να εργαστούμε ως εξής:

    * Βρίσκουμε μια αρχική συνάρτηση της f για την οποία ισχύει

        \[F'(x)=f(x)\]

    * Εφαρμόζουμε το θεώρημα του Rolle για την f στο διάστημα \Delta, αν ικανοποιούνται οι προυποθέσεις του.
    Συνέχεια ανάγνωσης ΥΠΑΡΞΗ ΡΙΖΑΣ ΕΞΙΣΩΣΗΣ ΜΕ ΑΓΝΩΣΤΗ ΑΡΧΙΚΗ ΣΥΝΑΡΤΗΣΗ