Αρχείο ετικέτας ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ

ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΑΠΟ ΕΥΘΕΙΑ

ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΑΠΟ ΕΥΘΕΙΑ

ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΑΠΟ ΕΥΘΕΙΑ

Έστω (\epsilon): A\mathrm{x} + \Beta\mathrm{y} + \Gamma = 0 μια ευθεία του Καρτεσιανού επιπέδου και Μ(\mathrm{x}_{0}, \mathrm{y}_{0}) ένα σημείο εκτός αυτής.
Η απόσταση του σημείου \boldsymbol{M} από την ευθεία \boldsymbol{(\epsilon)} συμβολίζεται με d(M,\epsilon) και αποδεικνύεται ότι είναι ίση με:

    \[d(M,\epsilon) = \frac{\lvert A\mathrm{x}_{0} + B\mathrm{y}_{0} + \Gamma \rvert}{\sqrt{A^{2} + B^{2}}}\]

Συνέχεια ανάγνωσης ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΑΠΟ ΕΥΘΕΙΑ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΕΥΘΕΙΑΣ ΜΕ ΓΝΩΣΤΗ ΑΠΟΣΤΑΣΗ ΑΠΟ ΣΗΜΕΙΟ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΕΥΘΕΙΑΣ ΜΕ ΓΝΩΣΤΗ ΑΠΟΣΤΑΣΗ ΑΠΟ ΣΗΜΕΙΟ

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΕΥΘΕΙΑΣ ΜΕ ΓΝΩΣΤΗ ΑΠΟΣΤΑΣΗ ΑΠΟ ΣΗΜΕΙΟ

ΔΙΧΟΤΟΜΟΣ ΓΩΝΙΑΣ ΔΥΟ ΕΥΘΕΙΩΝ

ΔΙΧΟΤΟΜΟΣ ΓΩΝΙΑΣ ΔΥΟ ΕΥΘΕΙΩΝ

Διχοτόμος μιας γωνίας είναι ο γεωμετρικός τόπος των σημείων του επιπέδουν που ισαπέχουν από τις πλευρές της γωνίας.
Για να βρούμε τις διχοτόμους των γωνιών που σχηματίζουν δύο ευθείες, εργαζόμαστε ως εξής:
Το σημείο Μ(\mathrm{x},\mathrm{y}) ανήκει στη διχοτόμο μιας γωνίας που σχηματίζουν δύο ευθείες (\epsilon_{1}) και (\epsilon_{2}), αν και μόνο αν:

ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΣΥΝΤΕΤΑΓΜΕΝΕΣ


Το εμβαδόν ενός τριγώνου Α\overset{\triangle}{B}\Gamma} αποδεικνύεται ότι είναι ίσο με:

    \[(A\overset{\triangle}{B}\Gamma) = \frac{1}{2} \cdot\Bigg{|} det(\overrightarrow{AB},\overrightarrow{A\Gamma}) \Bigg{|}\]


Συνέχεια ανάγνωσης ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΚΑΙ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

ΓΕΩΜΕΤΡΙΚΟΣ ΤΟΠΟΣ ΚΑΙ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ

ΑΣΚΗΣΕΙΣ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

  1. Να βρείτε τις τιμές του \lambda, ώστε καθεμία από τις παρακάτω εξισώσεις να παριστάνει ευθεία γραμμή.
    1. (\lambda^2 - 4)x + (\lambda^2 - 5\lambda + 6)y + \lambda - 1 = 0,
    2. x + y - 3 + \lambda(x + y + 1) = 0.

Συνέχεια ανάγνωσης ΑΣΚΗΣΕΙΣ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ ΠΟΥ ΔΙΕΡΧΟΝΤΑΙ ΑΠΟ ΤΟ ΙΔΙΟ ΣΗΜΕΙΟ

ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ ΠΟΥ ΔΙΕΡΧΟΝΤΑΙ ΑΠΟ ΤΟ ΙΔΙΟ ΣΗΜΕΙΟ

Για να αποδείξουμε ότι μια παραμετρική εξίσωση παριστάνει ευθείες που διέρχονατι από το ίδιο σημείο (ανεξάρτητο της παραμέτρου), εργαζόμαστε με έναν από τους τρόπους που ακολουθούν:
1ος τρόπος

\bullet Θεωρούμε Μ(\mathrm{x}_{0}, \mathrm{y}_{0}) το κοινό σημείο.

\bullet Αντικαθιστούμε τις συντεταγμένες του στην εξίσωση.

\bullet Μετατρέπουμε την εξίσωση που προκύπτει σε πολυωνυμική με άγνωστο την παράμετρο.
Συνέχεια ανάγνωσης ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ ΠΟΥ ΔΙΕΡΧΟΝΤΑΙ ΑΠΟ ΤΟ ΙΔΙΟ ΣΗΜΕΙΟ

ΣΧΕΤΙΚΗ ΘΕΣΗ ΔΥΟ ΕΥΘΕΙΩΝ

ΣΧΕΤΙΚΗ ΘΕΣΗ ΔΥΟ ΕΥΘΕΙΩΝ

Για να βρούμε τη σχετική θέση δύο ευθειών, λύνουμε το σύστημα των εξισώσεών τους. Συγκεκριμένα:

\bullet Αν το σύστημα έχει μοναδική λύση, τότε οι δύο ευθείες τέμνονται (δηλαδή έχουν μοναδικό κοινό σημείο).

\bullet Αν το σύστημα είναι αδύνατο, τότε οι ευθείες δεν έχουν κοινά σημεία, δηλαδή είναι παράλληλες.

\bullet Αν το σύστημα έχει άπειρες λύσεις, τότε οι ευθείες ταυτίζονται.

ΣΧΕΤΙΚΗ ΘΕΣΗ ΔΥΟ ΕΥΘΕΙΩΝ

Αν οι εξισώσεις των ευθειών είναι παραμετρικές, τότε για να λύσουμε το σύστημά τους, επιλέγουμε τη μέθοδο των οριζουσών.

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΣΧΕΤΙΚΗ ΘΕΣΗ ΔΥΟ ΕΥΘΕΙΩΝ

ΔΙΑΝΥΣΜΑ ΠΑΡΑΛΛΗΛΟ – ΚΑΘΕΤΟ ΣΕ ΕΥΘΕΙΑ

ΔΙΑΝΥΣΜΑ ΠΑΡΑΛΛΗΛΟ – ΚΑΘΕΤΟ ΣΕ ΕΥΘΕΙΑ

Η ευθεία με εξίσωση Α\mathrm{x} + B\mathrm{y} + \Gamma = 0 είναι:

A) παράλληλη στο διάνυσμα \vec{\delta} = (B, -A),
B) κάθετη στο διάνυσμα \vec{n} = (A, B).
Απόδειξη
A)
\bullet Αν Β \neq 0, τότε:

->>> η ευθεία \epsilon: A\mathrm{x} + B\mathrm{y} + \Gamma = 0 έχει συντελστή διεύθυνσης: \lambda_{\epsilon} = -\dfrac{A}{B},
->>> το διάνυσμα \vec{\delta} = (B, -A) έχει συντελστή διεύθυνσης: \lambda_{\vec{\delta}} = -\dfrac{A}{B}.
Συνέχεια ανάγνωσης ΔΙΑΝΥΣΜΑ ΠΑΡΑΛΛΗΛΟ – ΚΑΘΕΤΟ ΣΕ ΕΥΘΕΙΑ

ΓΩΝΙΑ ΔΥΟ ΕΥΘΕΙΩΝ

ΓΩΝΙΑ ΔΥΟ ΕΥΘΕΙΩΝ

Για να βρούμε την οξεία γωνία \varphi που σχηματίζουν δύο ευθείες \epsilon_{1} και \epsilon_{2}, εργαζόμαστε ως εξής:

\bullet Θεωρούμε διανύσματα \vec{\delta_{1}} \parallel \epsilon_{1} και \vec{\delta_{2}} \parallel \epsilon_{2}.

\bullet Βρίσκουμε τη γωνία \omega = (\widehat{\vec{\delta_{1}}, \vec{\delta}_{2}}) χρησιμοποιώντας τη σχέση:

    \[\sigma\upsilon\nu(\widehat{\vec{\delta_{1}}, \vec{\delta}_{2}}) = \frac{\vec{\delta_{1}} \cdot \vec{\delta_{2}}}{\lvert\vec{\delta_{1}}\rvert \lvert \vec{\delta_{2}\rvert}}.\]

\bullet Αν \sigma\upsilon\nu(\widehat{\vec{\delta_{1}}, \vec{\delta}_{2}}) > 0, τότε \omega < 90^{\circ} και η ζητούμενη γωνία είναι η:
Συνέχεια ανάγνωσης ΓΩΝΙΑ ΔΥΟ ΕΥΘΕΙΩΝ