Αρχείο ετικέτας ΟΛΟΚΛΗΡΩΣΗ ΜΕ ΑΛΛΑΓΗ ΜΕΤΑΒΛΗΤΗΣ

ΕΜΒΑΔΟΝ ΚΑΙ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

ΕΜΒΑΔΟΝ ΚΑΙ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

Συνέχεια ανάγνωσης ΕΜΒΑΔΟΝ ΚΑΙ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ

ΤΟ ΑΘΡΟΙΣΜΑ ΤΩΝ ΑΚΡΩΝ ΓΙΑ ΤΗΝ ΟΛΟΚΛΗΡΩΣΗ ΤΡΙΓΩΝΟΜΕΤΡΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΤΟ ΑΘΡΟΙΣΜΑ ΤΩΝ ΑΚΡΩΝ ΓΙΑ ΤΗΝ ΟΛΟΚΛΗΡΩΣΗ ΤΡΙΓΩΝΟΜΕΤΡΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΤΟ ΑΘΡΟΙΣΜΑ ΤΩΝ ΑΚΡΩΝ ΓΙΑ ΤΗΝ ΟΛΟΚΛΗΡΩΣΗ ΤΡΙΓΩΝΟΜΕΤΡΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΤΟ ΑΘΡΟΙΣΜΑ ΤΩΝ ΑΚΡΩΝ ΣΤΗΝ ΟΛΟΚΛΗΡΩΣΗ ΜΕ ΑΝΤΙΚΑΤΑΣΤΑΣΗ


Σε σύνθετες περιπτωσεις υπολογισμού ορισμένου ολοκληρώματος \dint_{\alpha}^{\beta} f(x) \, dx χρησιμοποιούμε το άθροισμα των άκρων στην ολοκλήρωση με αντικατάσταση, ως εξής:

    \[x = \alpha +\beta - u.\]

οπότε έχουμε:

    \[dx = (\alpha + \beta -u)' du \Rightarrow dx = -du.\]

Συνέχεια ανάγνωσης ΤΟ ΑΘΡΟΙΣΜΑ ΤΩΝ ΑΚΡΩΝ ΣΤΗΝ ΟΛΟΚΛΗΡΩΣΗ ΜΕ ΑΝΤΙΚΑΤΑΣΤΑΣΗ

ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΠΕΡΙΟΔΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΠΕΡΙΟΔΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΑΡΤΙΑΣ ΣΥΝΑΡΤΗΣΗΣ

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΑΡΤΙΑΣ ΣΥΝΑΡΤΗΣΗΣ

ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΠΕΡΙΤΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΠΕΡΙΤΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΝΤΙΚΑΤΑΣΤΑΣΗ

Στα ολοκληρώματα ρητής ή άρρητηςσυνάρτησης όπου η μεταβλητή x εμφανίζεται μόνο ως x^{2} αρκετές φορές χρειάζεται να κάνουμε την τριγωνομετρική αντικατάσταση του ημιτόνου ή της εφαπτομένης αξιοποιόντας την ταυτότητα \hm^{2}x+ \syn^{2}x =1.

Τριγωνομετρική αντικατάσταση του ημιτόνου


Για υπολογίσουμε ένα ολοκλήρωμα της μορφής

    \[\int_{\kappa}^{\lambda} f\Big( x, \sqrt{\beta^{2} -\alpha^{2}x^{2}}\Big)\, dx.\]

Χρησιμοποιούμε την τριγωνομετρική αντικατάσταση του ημιτόνου δηλαδή:

    \[\text{Θέτουμε } \quad x = \dfrac{\beta}{\alpha}\cdot \hm u \quad \text{με} \quad u \in \big[ -\dfrac{\pi}{2}, \dfrac{\pi}{2}\big].\]


Συνέχεια ανάγνωσης ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΝΤΙΚΑΤΑΣΤΑΣΗ

ΟΛΟΚΛΗΡΩΣΗ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ


Για την ολοκλήρώση τριγωνομετρικων συναρτήσεων της μορφής:

    \[\int_{\alpha}^{\beta} \hm^{\nu}x \cdot \syn^{\mu}x \,\, dx\]

διακρίνουμε τις παρακάτω περιπτώσεις:

  • Αν το \hm x είναι υψωμένο σε περιττή δύναμη, τότε θέτουμε u = \syn x.
  • Αν το \syn x είναι υψωμένο σε περιττή δύναμη, τότε θέτουμε u = \hm x.
  • Αν το \hm x και το \syn x είναι υψωμένο σε άρτια δύναμη, τότε χρησιμοποιούμε τους τύπους του αποτετραγωνισμού
    \syn^{2}x =\dfrac{1+\syn2x}{2} και \hm^{2}x =\dfrac{1-\syn2x}{2}.
  • Συνέχεια ανάγνωσης ΟΛΟΚΛΗΡΩΣΗ ΤΡΙΓΩΝΟΜΕΤΡΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

    ΣΥΝΔΥΑΣΜΟΣ ΑΝΤΙΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΠΑΡΑΓΟΝΤΙΚΗΣ ΟΛΟΚΛΗΡΩΣΗΣ

    Παράδειγμα.1.
    Να λυθεί το ολοκλήρωμα:

        \[\int_{0}^{\frac{\pi}{2}} e^{^{\hm x}}\cdot \hm^{2}x \cdot \syn x \, dx.\]

    Λύση

    Στο ολοκλήρωμα:

        \[\int_{0}^{\frac{\pi}{2}} e^{^{\hm x}}\cdot \hm^{2}x \cdot \syn x \, dx.\]

    Θέτουμε \hm x =u.
    Οπότε:

    Συνέχεια ανάγνωσης ΣΥΝΔΥΑΣΜΟΣ ΑΝΤΙΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΠΑΡΑΓΟΝΤΙΚΗΣ ΟΛΟΚΛΗΡΩΣΗΣ

    ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΠΡΟΦΑΝΕΙΣ ΑΝΤΙΚΑΤΑΣΤΑΣΕΙΣ

    Παράδειγμα.1.
    Να λυθεί το παρακάτω ολοκλήρωμα:

        \[\int_{0}^{\frac{\pi}{2}} e^{^{\hm x}}\cdot \syn x \, dx.\]

    Λύση

    Στο ολοκλήρωμα:

        \[\int_{0}^{\frac{\pi}{2}} e^{^{\hm x}}\cdot \syn x \, dx.\]

    Θέτουμε \hm x=u.

    Συνέχεια ανάγνωσης ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ ΠΡΟΦΑΝΕΙΣ ΑΝΤΙΚΑΤΑΣΤΑΣΕΙΣ