Αρχείο ετικέτας ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΤΥΠΟΣ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΘΕΜΑ 14

ΤΥΠΟΣ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΘΕΜΑ 14

Rendered by QuickLaTeX.com

ΛΥΣΗ

Συνέχεια ανάγνωσης ΤΥΠΟΣ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ ΚΑΙ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΘΕΜΑ 14

ΤΥΠΟΣ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ 16

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ NIH5

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ NIH5

Rendered by QuickLaTeX.com


ΛΥΣΗ

Συνέχεια ανάγνωσης ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ NIH5

Φ7/200

Φ6/201

ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΣΧΕΣΗ ΠΟΥ ΠΕΡΙΕΧΕΙ ΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ


Ξέρουμε ότι: το ορισμένο ολοκλήρωμα \dint_{\alpha}^{\beta} f(x) dx είναι σταθερός αριθμός.
Δηλαδή \dint_{\alpha}^{\beta} f(x) dx =c, \quad c\in \rr, οπότε θα ισχύει: \bigg(\dint_{\alpha}^{\beta} f(x) dx\bigg)'=0.
Συνεπώς στην περίπτωση που έχουμε μια ισότητα I η οποία περιέχει τις f(x), f(x) και το \dint_{\alpha}^{\beta} f(x) dx και θέλουμε να βρούμε την f τότε:

  • Θέτουμε c=\dint_{\alpha}^{\beta} f(x) dx \quad (1.)
  • Αντικαθιστούμε στη σχέση I το \dint_{\alpha}^{\beta} f(x) dx με το c
  • Βρίσκουμε την συνάρτηση f συναρτήσει του c και
  • Την αντικαθιστούμε στη σχέση (1).

Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΣΧΕΣΗ ΠΟΥ ΠΕΡΙΕΧΕΙ ΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ

ΕΚΦΡΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΩΣ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ

Παράδειγμα.
Να εκφράσετε τη συνάρτηση f, ώς σύνθεση δύο ή περισσοτέρων συναρτήσεων, αν ισχύει:
i.) \quad f(x) = e^{-x} \quad ii.) \quad f(x) = \syn^{3}(2x)+1
iii.) f(x) = e^{g(x)}-g^{3}(x)-\hm g(x) όπου g:\rr \to\rr.
Συνέχεια ανάγνωσης ΕΚΦΡΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΩΣ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΙΣΕΣ ΠΑΡΑΓΩΓΟΥΣ ΣΕ ΕΝΩΣΗ ΔΙΑΣΤΗΜΑΤΩΝ

Αν για δύο συναρτήσεις f και g ισχύει ότι:

    \[f'(x)=g'(x)\]

για κάθε x\in\Delta_1\cup\Delta_2\cup... όπου \Delta_1, \Delta_2,... διαστήματα, τότε είναι:

    \[f(x)= \left\{ \begin{tabular}{ll} $g(x)+c_1, \quad \text{αν} \quad x\in\Delta_1$ \\ $g(x)+c_2, \quad \text{αν} \quad x\in\Delta_2$ \\ $\vdots$ \end{tabular} \right.  \]

Συνέχεια ανάγνωσης ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΥΠΟΥ ΣΥΝΑΡΤΗΣΗΣ ΑΠΟ ΙΣΕΣ ΠΑΡΑΓΩΓΟΥΣ ΣΕ ΕΝΩΣΗ ΔΙΑΣΤΗΜΑΤΩΝ