Αρχείο ετικέτας ΟΡΙΟ ΜΕ ΑΝΤΙΚΑΤΑΣΤΑΣΗ

ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

Rendered by QuickLaTeX.com

ΛΥΣΗ

Συνέχεια ανάγνωσης ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΤΟ ΟΡΙΟ ΟΡΙΖΕΤΑΙ ΚΑΙ ΥΠΑΡΧΕΙ

ΤΟ ΟΡΙΟ ΟΡΙΖΕΤΑΙ ΚΑΙ ΥΠΑΡΧΕΙ

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΤΟ ΟΡΙΟ ΟΡΙΖΕΤΑΙ ΚΑΙ ΥΠΑΡΧΕΙ

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΕΠΑΝΑΛΗΨΗ ΘΕΜΑ 9

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΕΠΑΝΑΛΗΨΗ ΘΕΜΑ 9

Rendered by QuickLaTeX.com

ΛΥΣΗ
Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΕΠΑΝΑΛΗΨΗ ΘΕΜΑ 9

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΕΠΑΝΑΛΗΨΗ ΘΕΜΑ 6

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΕΠΑΝΑΛΗΨΗ ΘΕΜΑ 6

Rendered by QuickLaTeX.com

ΛΥΣΗ
Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΕΠΑΝΑΛΗΨΗ ΘΕΜΑ 6

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ25/208

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ25/208

Rendered by QuickLaTeX.com

ΛΥΣΗ

Συνέχεια ανάγνωσης ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ25/208

ΕΠΑΝΑΛΗΠΤΙΚΟ ΘΕΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ12/205

ΕΠΑΝΑΛΗΠΤΙΚΟ ΘΕΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ12/205

Rendered by QuickLaTeX.com

ΛΥΣΗ

Συνέχεια ανάγνωσης ΕΠΑΝΑΛΗΠΤΙΚΟ ΘΕΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ12/205

ΘΕΜΑ ΠΑΡΑΜΕΤΡΙΚΟ ΟΡΙΟ – ΟΡΙΟ ΜΕ ΑΠΟΛΥΤΗ ΤΙΜΗ Μ28/390

ΘΕΜΑ
28
Δίνεται η συνάρτηση f(x) =\dfrac{\alpha \cdot x^{2}+\alpha\cdot x +2}{x-1}, \,\, x>1.

-(α)- Να βρεθεί το \alpha \in \rr ώστε το \displaystyle\lim_{x\to +\infty}f(x) να είναι πραγματικός αριθμός.

-(β)- Για \alpha =0 και h(x) = \ln\Big(f(x)\Big) να βρεθούν τα παρακάτω όρια:

-(β.i)- \displaystyle\lim_{x\to 1}h(x)

-(β.ii)- \displaystyle\lim_{x\to +\infty}h(x)

-(γ)- Αν \alpha =0, να βρείτε το όριο

    \[\displaystyle\lim_{x\to +\infty}\dfrac{\big|f^{2}(x) -f(x)-1\big|-f(x)-1}{f^{2}(x)(x+\hm x)}.\]

-(δ)- Αν \alpha =0, και για την συνάρτηση g ισχύει:

    \[\Big| g(x)-f^{2}(x)-1\Big| <2f(x), \quad \text{για κάθε} \,\, x >1.\]

να δείξετε ότι ισχύει: \displaystyle\lim_{x\to +\infty}g(x)=1.

ΛΥΣΗ

Συνέχεια ανάγνωσης ΘΕΜΑ ΠΑΡΑΜΕΤΡΙΚΟ ΟΡΙΟ – ΟΡΙΟ ΜΕ ΑΠΟΛΥΤΗ ΤΙΜΗ Μ28/390

ΟΡΙΟ ΛΟΓΑΡΙΘΜΗΚΗΣ ΣΥΝΑΡΤΗΣΗΣ

Για τον υπολογισμό των ορίων στο μηδέν και στο άπειρο των λογαριθμικών συναρτήσεων έχουμε τα παρακάτω

  • Αν \alpha >1, τότε ισχύουν:

        \[\lim_{x\to 0^{+}}\log_{\alpha}x =-\infty \quad \text{και} \quad \lim_{x\to +\infty}\log_{\alpha}x +\infty\]

  • Αν 0<\alpha <1, τότε ισχύουν:

        \[\lim_{x\to 0^{+}}\log_{\alpha}x =+\infty \quad \text{και} \quad \lim_{x\to +\infty}\log_{\alpha}x =-\infty\]

Συνέχεια ανάγνωσης ΟΡΙΟ ΛΟΓΑΡΙΘΜΗΚΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ ΜΕ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΥΣ ΟΡΟΥΣ

Παράδειγμα
Να υπολογισθούν τα όρια

    \[ \newcounter{afa} \newcommand{\afa }{% \stepcounter{afa}% %exartate \alph{tbc})\ } %exartate \Alph{tbc})\ } \alph{afa})\ } \begin{tabular}{ l l  l} &\afa $\displaystyle\lim_{x\to +\infty}\dfrac{x-\hm x}{x}  \, $ \afa $\,\displaystyle\lim_{x\to +\infty}\big(x\cdot\hm\dfrac{1}{x}\big)$  &\afa $\displaystyle\lim_{x\to +\infty}\dfrac{\syn x}{x+3}  $  \end{tabular} \]

Συνέχεια ανάγνωσης ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ ΜΕ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΥΣ ΟΡΟΥΣ