Αρχείο ετικέτας ΟΡΙΟ ΜΕ ΑΝΤΙΚΑΤΑΣΤΑΣΗ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ25/208

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ25/208

Rendered by QuickLaTeX.com

ΛΥΣΗ

Συνέχεια ανάγνωσης ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ25/208

ΕΠΑΝΑΛΗΠΤΙΚΟ ΘΕΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ12/205

ΕΠΑΝΑΛΗΠΤΙΚΟ ΘΕΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ12/205

Rendered by QuickLaTeX.com

ΛΥΣΗ

Συνέχεια ανάγνωσης ΕΠΑΝΑΛΗΠΤΙΚΟ ΘΕΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Φ12/205

ΘΕΜΑ ΠΑΡΑΜΕΤΡΙΚΟ ΟΡΙΟ – ΟΡΙΟ ΜΕ ΑΠΟΛΥΤΗ ΤΙΜΗ Μ28/390

ΘΕΜΑ
28
Δίνεται η συνάρτηση f(x) =\dfrac{\alpha \cdot x^{2}+\alpha\cdot x +2}{x-1}, \,\, x>1.

-(α)- Να βρεθεί το \alpha \in \rr ώστε το \displaystyle\lim_{x\to +\infty}f(x) να είναι πραγματικός αριθμός.

-(β)- Για \alpha =0 και h(x) = \ln\Big(f(x)\Big) να βρεθούν τα παρακάτω όρια:

-(β.i)- \displaystyle\lim_{x\to 1}h(x)

-(β.ii)- \displaystyle\lim_{x\to +\infty}h(x)

-(γ)- Αν \alpha =0, να βρείτε το όριο

    \[\displaystyle\lim_{x\to +\infty}\dfrac{\big|f^{2}(x) -f(x)-1\big|-f(x)-1}{f^{2}(x)(x+\hm x)}.\]

-(δ)- Αν \alpha =0, και για την συνάρτηση g ισχύει:

    \[\Big| g(x)-f^{2}(x)-1\Big| <2f(x), \quad \text{για κάθε} \,\, x >1.\]

να δείξετε ότι ισχύει: \displaystyle\lim_{x\to +\infty}g(x)=1.

ΛΥΣΗ

Συνέχεια ανάγνωσης ΘΕΜΑ ΠΑΡΑΜΕΤΡΙΚΟ ΟΡΙΟ – ΟΡΙΟ ΜΕ ΑΠΟΛΥΤΗ ΤΙΜΗ Μ28/390

ΟΡΙΟ ΛΟΓΑΡΙΘΜΗΚΗΣ ΣΥΝΑΡΤΗΣΗΣ

Για τον υπολογισμό των ορίων στο μηδέν και στο άπειρο των λογαριθμικών συναρτήσεων έχουμε τα παρακάτω

  • Αν \alpha >1, τότε ισχύουν:

        \[\lim_{x\to 0^{+}}\log_{\alpha}x =-\infty \quad \text{και} \quad \lim_{x\to +\infty}\log_{\alpha}x +\infty\]

  • Αν 0<\alpha <1, τότε ισχύουν:

        \[\lim_{x\to 0^{+}}\log_{\alpha}x =+\infty \quad \text{και} \quad \lim_{x\to +\infty}\log_{\alpha}x =-\infty\]

Συνέχεια ανάγνωσης ΟΡΙΟ ΛΟΓΑΡΙΘΜΗΚΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ ΜΕ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΥΣ ΟΡΟΥΣ

Παράδειγμα
Να υπολογισθούν τα όρια

    \[ \newcounter{afa} \newcommand{\afa }{% \stepcounter{afa}% %exartate \alph{tbc})\ } %exartate \Alph{tbc})\ } \alph{afa})\ } \begin{tabular}{ l l  l} &\afa $\displaystyle\lim_{x\to +\infty}\dfrac{x-\hm x}{x}  \, $ \afa $\,\displaystyle\lim_{x\to +\infty}\big(x\cdot\hm\dfrac{1}{x}\big)$  &\afa $\displaystyle\lim_{x\to +\infty}\dfrac{\syn x}{x+3}  $  \end{tabular} \]

Συνέχεια ανάγνωσης ΟΡΙΟ ΣΤΟ ΑΠΕΙΡΟ ΜΕ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΥΣ ΟΡΟΥΣ