Αρχείο ετικέτας ΣΥΝΑΡΤΗΣΕΙΣ ΜΕ ΚΛΑΔΟΥΣ

ΟΡΙΟ ΣΕ ΣΥΝΑΡΤΗΣΗ ΜΕ ΚΛΑΔΟΥΣ

Έστω ότι θέλουμε να υπολογίσουμε το όριο στο x_o μιας συνάρτησης με κλάδους.

  • Αν το x_o, είναι σημείο στο οποίο αλλάζει ο τύπος της συνάρτησης, τότε παίρνουμε πλευρικά όρια και εφαρμόζουμε το παρακάτω κριτήριο:
  • Συνέχεια ανάγνωσης ΟΡΙΟ ΣΕ ΣΥΝΑΡΤΗΣΗ ΜΕ ΚΛΑΔΟΥΣ

    ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ

    Έστω δύο συναρτήσεις f,g με πεδία ορισμού A και B αντίστοιχα. Τότε οι πράξεις του αθροίσματος, διαφοράς, γινόμενου και πηλίκου ορίζονται ως εξής:

  • S(x)=f(x)+g(x), για x \in A\cap B (Δηλαδή το άθροισμα S έχει πεδίο ορισμού τα κοινά στοιχεία των συνόλων A και B δηλαδή το σύνολο A\cap B.)
  • D(x)=f(x)-g(x), για x \in A\cap B (Δηλαδή το άθροισμα S έχει πεδίο ορισμού τα κοινά στοιχεία των συνόλων A και B δηλαδή το σύνολο A\cap B.)
  • P(x)=f(x)\cdot g(x), για \quad x \in A\cap B(Δηλαδή το άθροισμα S έχει πεδίο ορισμού τα κοινά στοιχεία των συνόλων A και B δηλαδή το σύνολο A\cap B.)
  • R(x)=\dfrac{f(x)}{g(x)}, για \{x \in A\cap B \quad / \quad g(x) \neq 0\} (Δηλαδή το πηλίκο R έχει πεδίο ορισμού τα κοινά στοιχεία των συνόλων A και B, τέτοια ώστε να μην μηδενίζουν τον παρονομαστή, δηλαδή το σύνολο \{x \in A\cap B \quad /  \quad g(x) \neq 0\}).
  • Συνέχεια ανάγνωσης ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ

    ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

    Αν μια συνάρτηση f είναι:

  • Συνεχής στο κλειστό διάστημα [\alpha,\beta]
  • Παραγωγίσιμη στο ανοιχτό διάστημα (\alpha,\beta)
  • Τότε υπάρχει ένα τουλάχιστον \xi\in(\alpha,\beta) τέτοιο ώστε:

        \[f'(\xi)=\frac{f(\beta)-f(\alpha)}{\beta-\alpha}\]

    Συνέχεια ανάγνωσης ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ