ΔΙΑΝΥΣΜΑ ΠΑΡΑΛΛΗΛΟ ΣΕ ΕΥΘΕΙΑ

Print Friendly, PDF & Email

ΔΙΑΝΥΣΜΑ ΠΑΡΑΛΛΗΛΟ ΣΕ ΕΥΘΕΙΑ

Έστω ένα διάνυσμα \vec{\delta} παράλληλο σε μια ευθεία (\epsilon). Αν \varphi και \omega είναι οι γωνίες που σχηματίζουν το \vec{\delta} και η (\epsilon) αντίστοιχα με τον άξονα x'x, τότε (όπως φαίνεται στα επόμενα σχήματα) θα ισχύει:

    \[\varphi = \omega \quad \text{ή} \quad \varphi = \pi + \omega\]

Γωνία διανύσματος με τον άξονα x’x

φ = ω

 

ΔΙΑΝΥΣΜΑ ΠΑΡΑΛΛΗΛΟ ΣΕ ΕΥΘΕΙΑ

φ = π + ω

Άρα ισχύει η εξής πρόταση:
Όταν μια ευθεία και ένα διάνυσμα είναι παράλληλα, έχουν τον ίδιο συντελεστή διεύθυνσης.

Βιβλιογραφία:
Παπαδάκης εκδόσεις Σαββάλα.

Άδεια Creative Commons
Αυτή η εργασία χορηγείται με άδεια Creative Commons Αναφορά Δημιουργού – Μη Εμπορική Χρήση – Παρόμοια Διανομή 4.0 Διεθνές .

FacebooktwitterlinkedinmailFacebooktwitterlinkedinmail

Αφήστε μια απάντηση

Η ηλ. διεύθυνση σας δεν δημοσιεύεται. Τα υποχρεωτικά πεδία σημειώνονται με *

Δεν είμαι Robot *