Αρχείο ετικέτας ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΑΠΟ ΕΥΘΕΙΑ

ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΑΠΟ ΕΥΘΕΙΑ

ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΑΠΟ ΕΥΘΕΙΑ

Έστω (\epsilon): A\mathrm{x} + \Beta\mathrm{y} + \Gamma = 0 μια ευθεία του Καρτεσιανού επιπέδου και Μ(\mathrm{x}_{0}, \mathrm{y}_{0}) ένα σημείο εκτός αυτής.
Η απόσταση του σημείου \boldsymbol{M} από την ευθεία \boldsymbol{(\epsilon)} συμβολίζεται με d(M,\epsilon) και αποδεικνύεται ότι είναι ίση με:

    \[d(M,\epsilon) = \frac{\lvert A\mathrm{x}_{0} + B\mathrm{y}_{0} + \Gamma \rvert}{\sqrt{A^{2} + B^{2}}}\]

Συνέχεια ανάγνωσης ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΑΠΟ ΕΥΘΕΙΑ

ΑΠΟΣΤΑΣΗ ΠΑΡΑΛΛΗΛΩΝ ΕΥΘΕΙΩΝ

ΑΠΟΣΤΑΣΗ ΠΑΡΑΛΛΗΛΩΝ ΕΥΘΕΙΩΝ

Έστω
(\epsilon_{1}): \mathrm{y} = \lambda \mathrm{x} + \beta_{1} και (\epsilon_{2}): \mathrm{y} = \lambda \mathrm{x} + \beta_{2},
δύο παράλληλες ευθείες.
Η απόσταση των ευθειών (\epsilon_{1}) και (\epsilon_{2}) συμβολίζεται με d(\epsilon_{1}, \epsilon_{2}) και αποδεικνύεται ότι είναι ίση με:

    \[d(\epsilon_{1}, \epsilon_{2}) = \frac{|\beta_{1} - \beta_{2}|}{\sqrt{1 + \lambda^{2}}}.\]

Η απόσταση δύο παράλληλων ευθειών, είναι ίση με το μήκος του κάθετου ευθύγραμμου τμήματος, που ορίζεται από δύο τυχαία σημεία των ευθειών.

Συνέχεια ανάγνωσης ΑΠΟΣΤΑΣΗ ΠΑΡΑΛΛΗΛΩΝ ΕΥΘΕΙΩΝ

ΔΙΧΟΤΟΜΟΣ ΓΩΝΙΑΣ ΔΥΟ ΕΥΘΕΙΩΝ

ΔΙΧΟΤΟΜΟΣ ΓΩΝΙΑΣ ΔΥΟ ΕΥΘΕΙΩΝ

Διχοτόμος μιας γωνίας είναι ο γεωμετρικός τόπος των σημείων του επιπέδουν που ισαπέχουν από τις πλευρές της γωνίας.
Για να βρούμε τις διχοτόμους των γωνιών που σχηματίζουν δύο ευθείες, εργαζόμαστε ως εξής:
Το σημείο Μ(\mathrm{x},\mathrm{y}) ανήκει στη διχοτόμο μιας γωνίας που σχηματίζουν δύο ευθείες (\epsilon_{1}) και (\epsilon_{2}), αν και μόνο αν:

ΑΣΚΗΣΕΙΣ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

  1. Να βρείτε τις τιμές του \lambda, ώστε καθεμία από τις παρακάτω εξισώσεις να παριστάνει ευθεία γραμμή.
    1. (\lambda^2 - 4)x + (\lambda^2 - 5\lambda + 6)y + \lambda - 1 = 0,
    2. x + y - 3 + \lambda(x + y + 1) = 0.

Συνέχεια ανάγνωσης ΑΣΚΗΣΕΙΣ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

Η εξίσωση

    \[\boldsymbol{A\mathrm{x} + B\mathrm{y} + \Gamma} \text{ με } \, \boldsymbol{A \neq 0} \,\text{ή} \,\boldsymbol{B \neq 0}\]

Θεώρημα
Κάθε ευθεία του επιπέδου έχει εξίσωση της μορφής:

    \[A\mathrm{x} + B\mathrm{y} + \Gamma = 0 \text{ με} A \neq 0\,\, \text{ ή }\,\, B \neq 0 \qquad (1)\]

και αντίστροφα, κάθε εξίσωση της μορφής (1) παριστάνει ευθεία γραμμή.

Απόδειξη

Συνέχεια ανάγνωσης ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ ΠΟΥ ΔΙΕΡΧΟΝΤΑΙ ΑΠΟ ΤΟ ΙΔΙΟ ΣΗΜΕΙΟ

ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ ΠΟΥ ΔΙΕΡΧΟΝΤΑΙ ΑΠΟ ΤΟ ΙΔΙΟ ΣΗΜΕΙΟ

Για να αποδείξουμε ότι μια παραμετρική εξίσωση παριστάνει ευθείες που διέρχονατι από το ίδιο σημείο (ανεξάρτητο της παραμέτρου), εργαζόμαστε με έναν από τους τρόπους που ακολουθούν:
1ος τρόπος

\bullet Θεωρούμε Μ(\mathrm{x}_{0}, \mathrm{y}_{0}) το κοινό σημείο.

\bullet Αντικαθιστούμε τις συντεταγμένες του στην εξίσωση.

\bullet Μετατρέπουμε την εξίσωση που προκύπτει σε πολυωνυμική με άγνωστο την παράμετρο.
Συνέχεια ανάγνωσης ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ ΠΟΥ ΔΙΕΡΧΟΝΤΑΙ ΑΠΟ ΤΟ ΙΔΙΟ ΣΗΜΕΙΟ

ΔΙΑΝΥΣΜΑ ΠΑΡΑΛΛΗΛΟ – ΚΑΘΕΤΟ ΣΕ ΕΥΘΕΙΑ

ΔΙΑΝΥΣΜΑ ΠΑΡΑΛΛΗΛΟ – ΚΑΘΕΤΟ ΣΕ ΕΥΘΕΙΑ

Η ευθεία με εξίσωση Α\mathrm{x} + B\mathrm{y} + \Gamma = 0 είναι:

A) παράλληλη στο διάνυσμα \vec{\delta} = (B, -A),
B) κάθετη στο διάνυσμα \vec{n} = (A, B).
Απόδειξη
A)
\bullet Αν Β \neq 0, τότε:

->>> η ευθεία \epsilon: A\mathrm{x} + B\mathrm{y} + \Gamma = 0 έχει συντελστή διεύθυνσης: \lambda_{\epsilon} = -\dfrac{A}{B},
->>> το διάνυσμα \vec{\delta} = (B, -A) έχει συντελστή διεύθυνσης: \lambda_{\vec{\delta}} = -\dfrac{A}{B}.
Συνέχεια ανάγνωσης ΔΙΑΝΥΣΜΑ ΠΑΡΑΛΛΗΛΟ – ΚΑΘΕΤΟ ΣΕ ΕΥΘΕΙΑ

ΓΩΝΙΑ ΔΥΟ ΕΥΘΕΙΩΝ

ΓΩΝΙΑ ΔΥΟ ΕΥΘΕΙΩΝ

Για να βρούμε την οξεία γωνία \varphi που σχηματίζουν δύο ευθείες \epsilon_{1} και \epsilon_{2}, εργαζόμαστε ως εξής:

\bullet Θεωρούμε διανύσματα \vec{\delta_{1}} \parallel \epsilon_{1} και \vec{\delta_{2}} \parallel \epsilon_{2}.

\bullet Βρίσκουμε τη γωνία \omega = (\widehat{\vec{\delta_{1}}, \vec{\delta}_{2}}) χρησιμοποιώντας τη σχέση:

    \[\sigma\upsilon\nu(\widehat{\vec{\delta_{1}}, \vec{\delta}_{2}}) = \frac{\vec{\delta_{1}} \cdot \vec{\delta_{2}}}{\lvert\vec{\delta_{1}}\rvert \lvert \vec{\delta_{2}\rvert}}.\]

\bullet Αν \sigma\upsilon\nu(\widehat{\vec{\delta_{1}}, \vec{\delta}_{2}}) > 0, τότε \omega < 90^{\circ} και η ζητούμενη γωνία είναι η:
Συνέχεια ανάγνωσης ΓΩΝΙΑ ΔΥΟ ΕΥΘΕΙΩΝ

ΕΥΡΕΣΗ ΕΥΘΕΙΑΣ ΠΟΥ ΣΧΗΜΑΤΙΖΕΙ ΓΝΩΣΤΗ ΓΩΝΙΑ ΜΕ ΑΛΛΗ ΕΥΘΕΙΑ

ΕΥΡΕΣΗ ΕΥΘΕΙΑΣ ΠΟΥ ΣΧΗΜΑΤΙΖΕΙ ΓΝΩΣΤΗ ΓΩΝΙΑ ΜΕ ΑΛΛΗ ΕΥΘΕΙΑ

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΕΥΘΕΙΑΣ ΠΟΥ ΣΧΗΜΑΤΙΖΕΙ ΓΝΩΣΤΗ ΓΩΝΙΑ ΜΕ ΑΛΛΗ ΕΥΘΕΙΑ