Αρχείο ετικέτας ΓΩΝΙΑ ΔΙΑΝΥΣΜΑΤΩΝ

ΓΩΝΙΑ ΔΥΟ ΕΥΘΕΙΩΝ

ΓΩΝΙΑ ΔΥΟ ΕΥΘΕΙΩΝ

Για να βρούμε την οξεία γωνία \varphi που σχηματίζουν δύο ευθείες \epsilon_{1} και \epsilon_{2}, εργαζόμαστε ως εξής:

\bullet Θεωρούμε διανύσματα \vec{\delta_{1}} \parallel \epsilon_{1} και \vec{\delta_{2}} \parallel \epsilon_{2}.

\bullet Βρίσκουμε τη γωνία \omega = (\widehat{\vec{\delta_{1}}, \vec{\delta}_{2}}) χρησιμοποιώντας τη σχέση:

    \[\sigma\upsilon\nu(\widehat{\vec{\delta_{1}}, \vec{\delta}_{2}}) = \frac{\vec{\delta_{1}} \cdot \vec{\delta_{2}}}{\lvert\vec{\delta_{1}}\rvert \lvert \vec{\delta_{2}\rvert}}.\]

\bullet Αν \sigma\upsilon\nu(\widehat{\vec{\delta_{1}}, \vec{\delta}_{2}}) > 0, τότε \omega < 90^{\circ} και η ζητούμενη γωνία είναι η:
Συνέχεια ανάγνωσης ΓΩΝΙΑ ΔΥΟ ΕΥΘΕΙΩΝ

ΑΣΚΗΣΕΙΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ ΜΕΡΟΣ Α.

ΑΣΚΗΣΕΙΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ ΜΕΡΟΣ Α.

    1. Αν το διάνυσμα \vec{\alpha} είναι μοναδιαίο, |\vec{\beta}| = 2 και (\widehat{\vec{\alpha}, \vec{\beta}}) = \dfrac{2\pi}{3}, να υπολογίσετε τα εσωτερικά γινόμενα:i_). \vec{\alpha} \cdot \vec{\beta},
      ii_). (\vec{\alpha} - 2\vec{\beta}) \cdot (\vec{\alpha} - \vec{\beta}),
      iii_). (\vec{\alpha} - 3\vec{\beta})^2.
    2. Συνέχεια ανάγνωσης ΑΣΚΗΣΕΙΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ ΜΕΡΟΣ Α.

ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ


Εσωτερικό γινόμενο διανυσμάτων
Ορισμός
Ονομάζουμε εσωτερικό γινόμενο δύο μη μηδενικών διανυσμάτων \vec{\boldsymbol{α}} και \vec{\boldsymbol{\beta}}, και το συμβολίζουμε με \vec{\boldsymbol{α}} \cdot \vec{\boldsymbol{\beta}}, τον πραγματικό αριθμό:

    \[\vec{α} \cdot \vec{\beta}=\lvert{\vec{α}}\rvert \lvert{\vec{\beta}}\rvert \sigma \upsilon \nu \phi\]


Συνέχεια ανάγνωσης ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΑΠΟ ΓΡΑΜΜΙΚΟ ΣΥΝΔΥΑΣΜΟ

Σχέση της μορφής \boldsymbol{\kappa \vec{α} + \lambda \vec{\beta} + \mu \vec{\gamma} = \vec{0}}

Αν για τα διανύσματα \vec{α}, \vec{\beta} και \vec{\gamma} ισχύει μια σχέση της μορφής:

    \[\kappa \vec{α} + \lambda \vec{\beta} + \mu \vec{\gamma} = \vec{0}\quad \text{ με}\quad \kappa, \lambda, \mu \in \mathbb{R}\]

και γνωρίζουμε τα \lvert \vec{α} \rvert, \lvert \vec{\beta} \rvert και \lvert \vec{\gamma} \rvert, τότε μπορούμε να υπολογίζουμε καθένα από τα εσωτερικά γινόμενα \vec{α} \cdot \vec{\beta}, ~\vec{\beta} \cdot \vec{\gamma} και \vec{\gamma} \cdot \vec{α}.

Συνέχεια ανάγνωσης ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΑΠΟ ΓΡΑΜΜΙΚΟ ΣΥΝΔΥΑΣΜΟ

ΣΥΝΗΜΙΤΟΝΟ ΓΩΝΙΑΣ ΔΥΟ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΓΝΩΣΤΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

Συνημίτονο γωνίας δύο διανυσμάτων και συντεταγμένες διανυσμάτων

Έστω \vec{α}=(\mathrm{x_1}, \mathrm{y_1}) και \vec{\beta}=(\mathrm{x_2}, \mathrm{y_2}) δύο μη μηδενικά διανύσματα τότε για τη γωνία \theta που σχηματιζουν ισχύει ότι:

    \[\sigma \upsilon \nu \theta = \frac{\mathrm{x}_{1}\mathrm{x}_{2}+\mathrm{y}_{1}\mathrm{y}_{2}}{\sqrt{\mathrm{x}^{2}_{1}+\mathrm{y}^{2}_{1}} \cdot \sqrt{\mathrm{x}^{2}_{2}+\mathrm{y}^{2}_{2}}}\]

Συνέχεια ανάγνωσης ΣΥΝΗΜΙΤΟΝΟ ΓΩΝΙΑΣ ΔΥΟ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΓΝΩΣΤΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ