Αρχείο ετικέτας ΖΕΥΓΟΣ ΕΥΘΕΙΩΝ

ΓΩΝΙΑ ΔΥΟ ΕΥΘΕΙΩΝ

ΓΩΝΙΑ ΔΥΟ ΕΥΘΕΙΩΝ

Για να βρούμε την οξεία γωνία \varphi που σχηματίζουν δύο ευθείες \epsilon_{1} και \epsilon_{2}, εργαζόμαστε ως εξής:

\bullet Θεωρούμε διανύσματα \vec{\delta_{1}} \parallel \epsilon_{1} και \vec{\delta_{2}} \parallel \epsilon_{2}.

\bullet Βρίσκουμε τη γωνία \omega = (\widehat{\vec{\delta_{1}}, \vec{\delta}_{2}}) χρησιμοποιώντας τη σχέση:

    \[\sigma\upsilon\nu(\widehat{\vec{\delta_{1}}, \vec{\delta}_{2}}) = \frac{\vec{\delta_{1}} \cdot \vec{\delta_{2}}}{\lvert\vec{\delta_{1}}\rvert \lvert \vec{\delta_{2}\rvert}}.\]

\bullet Αν \sigma\upsilon\nu(\widehat{\vec{\delta_{1}}, \vec{\delta}_{2}}) > 0, τότε \omega < 90^{\circ} και η ζητούμενη γωνία είναι η:
Συνέχεια ανάγνωσης ΓΩΝΙΑ ΔΥΟ ΕΥΘΕΙΩΝ

ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΕΞΙΣΩΣΗ ΩΣ ΠΡΟΣ X KAI Y

ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΕΞΙΣΩΣΗ ΩΣ ΠΡΟΣ X KAI Y

Εξισώσεις της μορφής

    \[\boldsymbol{A\mathrm{x}^{2} + B\mathrm{y}^{2} + \Gamma \mathrm{x}\mathrm{y} + \Delta\mathrm{x} + E\mathrm{y} + Z = 0}\]


Για να αποδείξουμε ότι μια εξίσωση της μορφής:

    \[A\mathrm{x}^{2} + B\mathrm{y}^{2} + \Gamma \mathrm{x}\mathrm{y} + \Delta\mathrm{x} + E\mathrm{y} + Z = 0\]

παριστάνει δύο ευθείες, εργαζόμαστε ως εξής:
Θεωρούμε ότι η εξίσωση είναι τριώνυμο ως προς \mathrm{x} (ή ως προς \mathrm{y},) δηλαδή:

    \[A\mathrm{x}^{2} + (\Gamma \mathrm{y} + \Delta)\mathrm{x}+ B\mathrm{y}^{2} + E\mathrm{y} + Z = 0\]

Λύνουμε την παραπάνω εξίσωση και βρίσκουμε δύο σχέσεις ανάμεσα στα \mathrm{x} και \mathrm{y}, οι οποίες είναι οι εξισώσεις των ζητούμενων ευθειών

Συνέχεια ανάγνωσης ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ ΕΞΙΣΩΣΗ ΩΣ ΠΡΟΣ X KAI Y