Αρχείο ετικέτας ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΘΕΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΤΥΠΟΣ ΗΜΙΤΟΝΟΥ ΟΡΙΟ ΔΙΑΦΟΡΑΣ ΛΟΓΑΡΙΘΜΩΝ Μ29/390

ΘΕΜΑ
29
-(α)- Να βρείτε τις ρίζες και το πρόσημο της συνάρτησης

    \[g(x)=x-\hm x.\]

-(β)- Δίνεται η συνάρτηση f(x) =\ln(x+1)- \ln x
-(β.i)- Να βρείτε το σύνολο τιμών της f.
-(β.ii) – Να δείξετε ότι η εξίσωση f(x) = \alpha - \hm \alpha έχει μία ακριβώς λύση στο διάστημα (0, +\infty) για κάθε \alpha > 0.
ΛΥΣΗ

Συνέχεια ανάγνωσης ΘΕΜΑ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΣ ΤΥΠΟΣ ΗΜΙΤΟΝΟΥ ΟΡΙΟ ΔΙΑΦΟΡΑΣ ΛΟΓΑΡΙΘΜΩΝ Μ29/390

ΜΕΛΕΤΗ ΜΟΝΟΤΟΝΙΑΣ ΠΑΡΑΓΩΓΙΣΙΜΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ


Στις περιπτώσεις που ζητάμε την μονοτονία μιας συνάρτησης f, για την οποία δεν γνωρίζουμε τον τύπο της, αλλά γνωρίζουμε ότι η σύνθεση της με μια συνάρτηση g είναι ίση με μια συνάρτηση h.

    \[g\circ f = h.\]

Πρέπει να υπολογίσουμε την μονοτονία της g της h, οπότε θα είναι γνωστή και η μονοτονία της σύνθεσης τών συναρτήσεων f με g, δηλαδη της g\circ f.


Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ

ΥΠΑΡΞΗ ΜΟΝΑΔΙΚΗΣ ΡΙΖΑΣ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΓΝΩΣΤΟ ΣΥΝΟΛΟ ΤΙΜΩΝ

Στις ασκήσεις που αναζητάμε την ύπαρξη μοναδικής ρίζας μιας συνάρτησης, και δεν γνωρίζουμε συγκεκριμένο διάστημα στο οποίο θα μπορούσαμε να εφαρμόσουμε, κάποιο απο τα υπαρξιακά θεωρήματα Bolzano, Rolle τότε εργαζόμαστε ως εξής:
Συνέχεια ανάγνωσης ΥΠΑΡΞΗ ΜΟΝΑΔΙΚΗΣ ΡΙΖΑΣ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΓΝΩΣΤΟ ΣΥΝΟΛΟ ΤΙΜΩΝ

ΣΥΝΟΛΟ ΤΙΜΩΝ ΠΑΡΑΓΩΓΙΣΙΜΗΣ ΣΥΝΑΡΤΗΣΗΣ

Έστω f: A \to \rr, μια συνεχής συνάρτηση. Για να βρούμε το σύνολο τιμών της συνάρτησης f, εργαζόμαστε ως εξής

  • Μελετάμε την f ως προς τη μονοτονία.
  • Βρίσκουμε τα διαστήματα \Delta_{1},\Delta_{2},\cdots του πεδίου ορισμού της συνάρτησης f, σε καθένα απο τα διαστήματα η οποία διατηρεί μονοτονία.

Συνέχεια ανάγνωσης ΣΥΝΟΛΟ ΤΙΜΩΝ ΠΑΡΑΓΩΓΙΣΙΜΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΑΠΟ ΑΝΙΣΟΤΗΤΑ ΣΕ ΙΣΟΤΗΤΑ

Αν έχουμε ως δεδομένο μια ανισότητα της μορφής

    \[f(x)\leq g(x) \quad \text{ή} \quad f(x)\geq g(x)\]

για κάθε x\in\Delta και το ζητούμενο είναι να αποδείξουμε μια ισότητα τότε εργαζόμαστε ως εξής:
Συνέχεια ανάγνωσης ΑΠΟ ΑΝΙΣΟΤΗΤΑ ΣΕ ΙΣΟΤΗΤΑ

ΟΛΙΚΟ ΑΚΡΟΤΑΤΟ ΣΥΝΑΡΤΗΣΗΣ ΓΙΑ ΤΟΝ ΠΡΟΣΔΙΟΡΙΣΜΟ ΠΡΟΣΗΜΟΥ ΣΥΝΑΡΤΗΣΗΣ

  • Αν μια συνάρτηση f: A\rightarrow\rr έχει ολικό ελάχιστο \mu>0 τότε ισχύει ότι f(x)>0 για κάθε x\in A.
  • Αν μια συνάρτηση f: A\rightarrow\rr έχει ολικό μέγιστο M<0 τότε ισχύει ότι f(x)<0 για κάθε x\in A.
  • Συνέχεια ανάγνωσης ΟΛΙΚΟ ΑΚΡΟΤΑΤΟ ΣΥΝΑΡΤΗΣΗΣ ΓΙΑ ΤΟΝ ΠΡΟΣΔΙΟΡΙΣΜΟ ΠΡΟΣΗΜΟΥ ΣΥΝΑΡΤΗΣΗΣ

    ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΩΝ ΑΚΡΟΤΑΤΩΝ ΣΥΝΑΡΤΗΣΗΣ

    Για να αποδείξουμε μια ανισότητα της μορφής

        \[A(x)\geq B(x) \quad \text{ή} \quad A(x)\leq B(x)\]

    μπορούμε να εργαστούμε ως εξής:

    • Μεταφέρουμε όλους τους όρους στο πρώτο μέλος.
    • Θέτουμε το πρώτο μέλος ως συνάρτηση f(x), οπότε η ανισότητα παίρνει τη μορφή

          \[f(x)\geq0 \quad \text{ή} \quad f(x)\leq0\]

    • Μελετάμε την f ως προς τη μονοτονία και τα ακρότατα και διαπιστώνουμε ότι παρουσιάζει ολικό ελάχιστο ή ολικό μέγιστο το 0, οπότε αντίστοιχα θα ισχύει:

          \[f(x)\geq0 \quad \text{ή} \quad f(x)\leq0\]

    Συνέχεια ανάγνωσης ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΤΩΝ ΑΚΡΟΤΑΤΩΝ ΣΥΝΑΡΤΗΣΗΣ