Αρχείο ετικέτας ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ

ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

Η εξίσωση

    \[\boldsymbol{A\mathrm{x} + B\mathrm{y} + \Gamma} \text{ με } \, \boldsymbol{A \neq 0} \,\text{ή} \,\boldsymbol{B \neq 0}\]

Θεώρημα
Κάθε ευθεία του επιπέδου έχει εξίσωση της μορφής:

    \[A\mathrm{x} + B\mathrm{y} + \Gamma = 0 \text{ με} A \neq 0\,\, \text{ ή }\,\, B \neq 0 \qquad (1)\]

και αντίστροφα, κάθε εξίσωση της μορφής (1) παριστάνει ευθεία γραμμή.

Απόδειξη

Συνέχεια ανάγνωσης ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ ΠΟΥ ΔΙΕΡΧΟΝΤΑΙ ΑΠΟ ΤΟ ΙΔΙΟ ΣΗΜΕΙΟ

ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ ΠΟΥ ΔΙΕΡΧΟΝΤΑΙ ΑΠΟ ΤΟ ΙΔΙΟ ΣΗΜΕΙΟ

Για να αποδείξουμε ότι μια παραμετρική εξίσωση παριστάνει ευθείες που διέρχονατι από το ίδιο σημείο (ανεξάρτητο της παραμέτρου), εργαζόμαστε με έναν από τους τρόπους που ακολουθούν:
1ος τρόπος

\bullet Θεωρούμε Μ(\mathrm{x}_{0}, \mathrm{y}_{0}) το κοινό σημείο.

\bullet Αντικαθιστούμε τις συντεταγμένες του στην εξίσωση.

\bullet Μετατρέπουμε την εξίσωση που προκύπτει σε πολυωνυμική με άγνωστο την παράμετρο.
Συνέχεια ανάγνωσης ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ ΠΟΥ ΔΙΕΡΧΟΝΤΑΙ ΑΠΟ ΤΟ ΙΔΙΟ ΣΗΜΕΙΟ

ΕΥΡΕΣΗ ΕΥΘΕΙΑΣ ΠΟΥ ΣΧΗΜΑΤΙΖΕΙ ΓΝΩΣΤΗ ΓΩΝΙΑ ΜΕ ΑΛΛΗ ΕΥΘΕΙΑ

ΕΥΡΕΣΗ ΕΥΘΕΙΑΣ ΠΟΥ ΣΧΗΜΑΤΙΖΕΙ ΓΝΩΣΤΗ ΓΩΝΙΑ ΜΕ ΑΛΛΗ ΕΥΘΕΙΑ

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΕΥΘΕΙΑΣ ΠΟΥ ΣΧΗΜΑΤΙΖΕΙ ΓΝΩΣΤΗ ΓΩΝΙΑ ΜΕ ΑΛΛΗ ΕΥΘΕΙΑ