Αρχείο ετικέτας ΑΝΙΣΩΣΕΙΣ

ΟΛΙΚΟ ΑΚΡΟΤΑΤΟ ΣΥΝΑΡΤΗΣΗΣ ΓΙΑ ΤΟΝ ΠΡΟΣΔΙΟΡΙΣΜΟ ΠΡΟΣΗΜΟΥ ΣΥΝΑΡΤΗΣΗΣ

  • Αν μια συνάρτηση f: A\rightarrow\rr έχει ολικό ελάχιστο \mu>0 τότε ισχύει ότι f(x)>0 για κάθε x\in A.
  • Αν μια συνάρτηση f: A\rightarrow\rr έχει ολικό μέγιστο M<0 τότε ισχύει ότι f(x)<0 για κάθε x\in A.
  • Συνέχεια ανάγνωσης ΟΛΙΚΟ ΑΚΡΟΤΑΤΟ ΣΥΝΑΡΤΗΣΗΣ ΓΙΑ ΤΟΝ ΠΡΟΣΔΙΟΡΙΣΜΟ ΠΡΟΣΗΜΟΥ ΣΥΝΑΡΤΗΣΗΣ

    ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΑΝΙΣΩΣΕΙΣ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

    Μια ανίσωση που δεν λύνεται με κάποια γνωστή μέθοδο, μπορεί να λυθεί ως εξής:

  • Μεταφέρουμε όλους τους όρους στο πρώτο μέλος.
  • Θέτουμε το πρώτο μέλος ίσο με f(x), οπότε η εξίσωση έχει τη μορφή f(x)\leq 0 ή f(x)\geq 0
  • Με τη μέθοδο των παραγώγων αποδεικνύουμε ότι η f είναι γνησίως μονότονη.
  • Βρίσκουμε με δοκιμές μία ρίζα \rho της εξίσωσης f(x)=0, οπότε η ανίσωση γίνεται f(x)\leq f(\rho) ή f(x)\geq f(\rho)
  • Εκμεταλλευόμαστε τη μονοτονία της f.
  • π.χ. αν

    Rendered by QuickLaTeX.com

    ή

    Rendered by QuickLaTeX.com

    Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΑΝΙΣΩΣΕΙΣ ΠΑΡΑΓΩΓΙΣΙΜΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

    ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΑΝΙΣΩΣΕΙΣ

    ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΑΝΙΣΩΣΕΙΣ

    Ισχύουν:

    • H σύνθεση f\circ f^{^{-1}} είναι συνάρτηση ταυτοτική στο f(A) δηλαδή:

          \[\Big( f\circ f^{^{-1}}\Big)(x)=f \Big(f^{^{-1}}(x)\Big)=x.\]

    • H σύνθεση f^{^{-1}}\circ f είναι συνάρτηση ταυτοτική στο A_{f} δηλαδή:

          \[\Big( f^{^{-1}}\circ f\Big)(x)=f ^{^{-1}}\Big(f(x)\Big)=x.\]

    • Οι συναρτήσεις f και f^{^{-1}} έχουν το ίδιο είδος μονοτονίας.
    • Rendered by QuickLaTeX.com

    • Rendered by QuickLaTeX.com

    Συνέχεια ανάγνωσης ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΑΝΙΣΩΣΕΙΣ

    ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ

    ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ

    Μια ανίσωση που δεν λύνεται με κάποια γνωστή μέθοδο, μπορεί να λυθεί ως εξής:

    • Μεταφέρουμε όλους τους όρους στο πρώτο μέλος.
    • Θέτουμε το πρώτο μέλος ίσο με f(x), οπότε η εξίσωση έχει τη μορφή f(x)\leq 0 ή f(x)\geq 0
    • Αποδεικνύουμε ότι η f είναι γνησίως μονότονη.
    • Βρίσκουμε με δοκιμές μία ρίζα \rho της εξίσωσης f(x)=0, οπότε η ανίσωση γίνεται f(x)\leq f(\rho) ή f(x)\geq f(\rho)
    • Εκμεταλλευόμαστε τη μονοτονία της f.

    π.χ. αν

    Rendered by QuickLaTeX.com

    ή

    Rendered by QuickLaTeX.com

    Συνέχεια ανάγνωσης ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ