Αρχείο ετικέτας ΕΥΘΕΙΑ ΠΟΥ ΔΙΕΡΧΕΤΑΙ ΑΠΟ ΣΗΜΕΙΟ

ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ ΠΟΥ ΔΙΕΡΧΟΝΤΑΙ ΑΠΟ ΤΟ ΙΔΙΟ ΣΗΜΕΙΟ

ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ ΠΟΥ ΔΙΕΡΧΟΝΤΑΙ ΑΠΟ ΤΟ ΙΔΙΟ ΣΗΜΕΙΟ

Για να αποδείξουμε ότι μια παραμετρική εξίσωση παριστάνει ευθείες που διέρχονατι από το ίδιο σημείο (ανεξάρτητο της παραμέτρου), εργαζόμαστε με έναν από τους τρόπους που ακολουθούν:
1ος τρόπος

\bullet Θεωρούμε Μ(\mathrm{x}_{0}, \mathrm{y}_{0}) το κοινό σημείο.

\bullet Αντικαθιστούμε τις συντεταγμένες του στην εξίσωση.

\bullet Μετατρέπουμε την εξίσωση που προκύπτει σε πολυωνυμική με άγνωστο την παράμετρο.
Συνέχεια ανάγνωσης ΠΑΡΑΜΕΤΡΙΚΕΣ ΕΥΘΕΙΕΣ ΠΟΥ ΔΙΕΡΧΟΝΤΑΙ ΑΠΟ ΤΟ ΙΔΙΟ ΣΗΜΕΙΟ

ΕΥΘΕΙΑ ΠΟΥ ΔΙΕΡΧΕΤΑΙ ΑΠΟ ΣΗΜΕΙΟ

ΔΥΟ ΣΗΜΕΙΑ ΟΡΙΖΟΥΝ ΕΥΘΕΙΑ


ΔΥΟ ΣΗΜΕΙΑ ΟΡΙΖΟΥΝ ΕΥΘΕΙΑ
Έστω (\epsilon) η ευθεία που διέρχεται από τα δύο σημεία Α(\mathrm{x}_{1}, \mathrm{y}_{1}) και Β(\mathrm{x}_{2}, \mathrm{y}_2).

  •  Αν \mathrm{x}_{1} \neq \mathrm{x}_{2}, τότε ο συντελεστής διεύθυνσης της (\epsilon) είναι:
    \lambda = \dfrac{\mathrm{y}_{2} - \mathrm{y}_{1}}{\mathrm{x}_{2} - \mathrm{x}_{1}}
    και η εξίσωσή της γίνεται:
    (\epsilon):\mathrm{y} - \mathrm{y}_{1} = \lambda (\mathrm{x} - \mathrm{x}_{1}) \Leftrightarrow \mathrm{y} - \mathrm{y}_{1} = \frac{\mathrm{y}_{2} - \mathrm{y}_{1}}{\mathrm{x}_{2} - \mathrm{x}_{1}} (\mathrm{x} - \mathrm{x}_{1})
  • Αν \mathrm{x}_{1} = \mathrm{x}_{2}, τότε δεν ορίζεται συντελεστής διεύθυνσης για την (\epsilon) και η εξίσωσή της είναι:
    (\epsilon):\mathrm{x} = \mathrm{x}_{1}
    Δηλαδή, η ευθεία (\epsilon):\mathrm{x} = \mathrm{x}_{1} είναι παράλληλη στον y',y.

Συνέχεια ανάγνωσης ΔΥΟ ΣΗΜΕΙΑ ΟΡΙΖΟΥΝ ΕΥΘΕΙΑ

ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΔΙΕΥΘΥΝΣΗΣ ΚΑΙ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ

ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΔΙΕΥΘΥΝΣΗΣ ΚΑΙ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΥΠΟΛΟΓΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΔΙΕΥΘΥΝΣΗΣ ΚΑΙ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ

ΤΡΙΑ ΣΗΜΕΙΑ ΣΥΝΕΥΘΕΙΑΚΑ

ΠΡΟΒΟΛΗ ΣΗΜΕΙΟΥ ΣΕ ΕΥΘΕΙΑ

ΣΥΜΜΕΤΡΙΚΟ ΣΗΜΕΙΟΥ ΩΣ ΠΡΟΣ ΕΥΘΕΙΑ