Αρχείο ετικέτας ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΑΝΤΙΣΤΡΟΦΗ – ΓΝΗΣΙΩΣ ΑΥΞΟΥΣΑ – ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΕΞΙΣΩΣΕΙΣ

Επίλυση της εξίσωσης {\bf{ f^{^{-1}}(x) =f(x),}} στην περίπτωση που η f είναι γνησίως αύξουσα συνάρτηση.
Ισχύει ότι:

  • H σύνθεση f\circ f^{^{-1}} είναι συνάρτηση ταυτοτική στο f(A) δηλαδή:
  •     \[\Big( f\circ f^{^{-1}}\Big)(x)=f \Big(f^{^{-1}}(x)\Big)=x.\]

  • H σύνθεση f^{^{-1}}\circ f είναι συνάρτηση ταυτοτική στο A_{f} δηλαδή:
  •     \[\Big( f^{^{-1}}\circ f\Big)(x)=f ^{^{-1}}\Big(f(x)\Big)=x.\]

  • Οι συναρτήσεις f και f^{^{-1}} έχουν το ίδιο είδος μονοτονίας.
  • Συνέχεια ανάγνωσης ΑΝΤΙΣΤΡΟΦΗ – ΓΝΗΣΙΩΣ ΑΥΞΟΥΣΑ – ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΕΞΙΣΩΣΕΙΣ

    ΣΥΝΑΡΤΗΣΕΙΣ 1-1 ΚΑΙ ΕΞΙΣΩΣΕΙΣ

    Μια εξίσωση που δεν λύνεται με κάποια γνωστή μέθοδο, μπορεί να λυθεί ως εξής:

  • Μεταφέρουμε όλους τους όρους στο πρώτο μέλος.
  • Θέτουμε το πρώτο μέλος ίσο με f(x), οπότε η εξίσωση έχει τη μορφή f(x)=0
  • Αποδεικνύουμε ότι η f είναι 1-1.
  • Βρίσκουμε με δοκιμές μία ρίζα x_{0} της εξίσωσης f(x)=0
  • Η εξίσωση γίνεται

        \begin{align*} 		&f(x)=0 \Leftrightarrow\\ 		&f(x)=f(x_{0}) \stackrel{1-1}{\Leftrightarrow} \\ 		&x=x_{0} 	\end{align*}

  • Συνέχεια ανάγνωσης ΣΥΝΑΡΤΗΣΕΙΣ 1-1 ΚΑΙ ΕΞΙΣΩΣΕΙΣ

    ΑΠΟΔΕΙΞΗ ΣΥΝΑΡΤΗΣΗΣ 1-1 ΚΑΙ ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ

  • Αν μια συνάρτηση f είναι γνησίως μονότονη τότε η συνάρτηση f είναι και 1-1. Το αντίστροφο δεν ισχύει.
  • Αν για μία συνάρτηση f διαπιστώσουμε ότι είναι άρτια ή περιοδική ή ότι για δύο διαφορετικές τιμές του x π.χ x_{1},x_{2} είναι f(x_{1})=f(x_{2}) τότε η συνάρτηση δεν είναι 1-1 αφου θα έχουμε x_{1}\neq x_{2} \Rightarrow f(x_{1})=f(x_{2}).
  • Συνέχεια ανάγνωσης ΑΠΟΔΕΙΞΗ ΣΥΝΑΡΤΗΣΗΣ 1-1 ΚΑΙ ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ

    ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ

    Για την απόδειξη ανισοτητων με τη μέθοδο της μονοτονίας ακολουθούμε τα παρακάτω βήματα:

  • Διαχωρίζουμε τους όρους στα δύο μέλη έτσι ώστε σε κάθε μέλος να υπάρχει η ίδια παράμετρος.
  • Παρατηρούμε αν ορίζεται η ίδια συνάρτηση και στα δύο μέλη και η μόνη διαφορά τους είναι η διαφορετική παράμετρος.
  • Θεωρουμε την παραπάνω συνάρτηση ως προς f(x) και την μελετάμε ως προς τη μονοτονία.
  • Εφαρμόζουμε τον ορισμο της μονοτονίας για τις περιπτώσεις της γνησίως αύξουσας και γνησίως φθίνουσας συνάρτησης, αντίστοιχα.
  • Συνέχεια ανάγνωσης ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ

    ΟΛΙΚΑ ΑΚΡΟΤΑΤΑ ΚΑΙ ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ

  • Αν f(x) \leq f(x_{0}) για κάθε x \in A_{f} θα λέμε ότι η f παρουσιάζει στο x_{0}\in A_{f}, ολικό μέγιστο, το f(x_{0}).
    δηλαδή

        \[max f = f(x_{0})\]

  • Αν f(x) \geq f(x_{0}) για κάθε x \in A_{f} θα λέμε ότι η f παρουσιάζει στο x_{0}\in A_{f}, ολικό ελάχιστο, το f(x_{0}).
    δηλαδή

        \[min f = f(x_{0})\]

  • Συνέχεια ανάγνωσης ΟΛΙΚΑ ΑΚΡΟΤΑΤΑ ΚΑΙ ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ

    ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ

    Μια ανίσωση που δεν λύνεται με κάποια γνωστή μέθοδο, μπορεί να λυθεί ως εξής:

  • Μεταφέρουμε όλους τους όρους στο πρώτο μέλος.
  • Θέτουμε το πρώτο μέλος ίσο με f(x), οπότε η εξίσωση έχει τη μορφή f(x)\leq 0 ή f(x)\geq 0
  • Αποδεικνύουμε ότι η f είναι γνησίως μονότονη.
  • Βρίσκουμε με δοκιμές μία ρίζα \rho της εξίσωσης f(x)=0, οπότε η ανίσωση γίνεται f(x)\leq f(\rho) ή f(x)\geq f(\rho)
  • Εκμεταλλευόμαστε τη μονοτονία της f.
  • π.χ. αν

    Rendered by QuickLaTeX.com

    ή

    Rendered by QuickLaTeX.com

    Συνέχεια ανάγνωσης ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ

    ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΠΛΗΘΟΣ ΡΙΖΩΝ

    Αν μια συνάρτηση f είναι γνησίως μονότονη, τότε η C_{f} τέμνει τον άξονα x'x το πολύ μία φορά. Αυτό σημαίνει ότι η εξίσωση f(x)=0 έχει το πολύ μία ρίζα.
    Μια εξίσωση που δεν λύνεται με κάποια γνωστή μέθοδο, μπορεί να λυθεί ως εξής:

  • Μεταφέρουμε όλους τους όρους στο πρώτο μέλος.
  • Θέτουμε το πρώτο μέλος ίσο με f(x), οπότε η εξίσωση έχει τη μορφή f(x)=0
  • Βρίσκουμε με δοκιμές μία ρίζα της εξίσωσης f(x)=0.
  • Αποδεικνύουμε ότι η f είναι γνησίως μονότονη, οπότε η εξίσωση

        \[f(x)=0\]

    έχει το πολύ μία ρίζα. Έτσι η ρίζα που βρήκαμε προηγουμένως είναι μοναδική.

  • Συνέχεια ανάγνωσης ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΠΛΗΘΟΣ ΡΙΖΩΝ

    ΕΥΡΕΣΗ ΜΟΝΟΤΟΝΙΑΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΟΡΙΣΜΟΥ ΣΕ ΣΥΝΑΡΤΗΣΗ ΜΕ ΚΛΑΔΟΥΣ

    Παράδειγμα.1
    Να μελετήσετε ως προς τη μονοτονία τη συνάρτηση

        \[ f(x)=\left\{     \begin{tabular}{ll} 		$\sqrt{x}-\dfrac{1}{x},  \quad  x > 0$ \\\\ 		$1-2x^3+e^{-x}, \quad x \leq 0$  	\end{tabular} 	\right. \]

    Συνέχεια ανάγνωσης ΕΥΡΕΣΗ ΜΟΝΟΤΟΝΙΑΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΟΡΙΣΜΟΥ ΣΕ ΣΥΝΑΡΤΗΣΗ ΜΕ ΚΛΑΔΟΥΣ

    ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΟΡΙΣΜΟΥ ΑΣΚΗΣΕΙΣ

    Παράδειγμα.1
    Να μελετήσετε ως προς τη μονοτονία την συνάρτηση:

        \[f(x)=5-\sqrt{6-2x}.\]

    Λύση
    Η συνάρτηση f(x)=5-\sqrt{6-2x} ορίζεται όταν:
    Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΟΡΙΣΜΟΥ ΑΣΚΗΣΕΙΣ

    ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΕΩΝ

    Μια συνάρτηση f λέγεται:
    Γνησίως αύξουσα σ’ένα διάστημα \Delta \subseteq A_{f}, όταν για οποιαδήποτε x_{1},x_{2}\in \Delta με x_{1}< x_{2} ισχύει:

        \[f(x_{1})<f(x_{2}).\]

    Γνησίως φθίνουσα σ’ένα διάστημα \Delta \subseteq A_{f}, όταν για οποιαδήποτε
    x_{1},x_{2}\in\Delta με x_{1}< x_{2} ισχύει:

        \[f(x_{1})>f(x_{2}).\]

    Συνέχεια ανάγνωσης ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΕΩΝ