ΣΥΝΑΡΤΗΣΙΑΚΕΣ ΣΧΕΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΙΑΚΕΣ ΣΧΕΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

 

Rendered by QuickLaTeX.com

Συνέχεια ανάγνωσης ΣΥΝΑΡΤΗΣΙΑΚΕΣ ΣΧΕΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΓΩΝΙΑ ΔΥΟ ΕΥΘΕΙΩΝ

ΓΩΝΙΑ ΔΥΟ ΕΥΘΕΙΩΝ

Για να βρούμε την οξεία γωνία \varphi που σχηματίζουν δύο ευθείες \epsilon_{1} και \epsilon_{2}, εργαζόμαστε ως εξής:

\bullet Θεωρούμε διανύσματα \vec{\delta_{1}} \parallel \epsilon_{1} και \vec{\delta_{2}} \parallel \epsilon_{2}.

\bullet Βρίσκουμε τη γωνία \omega = (\widehat{\vec{\delta_{1}}, \vec{\delta}_{2}}) χρησιμοποιώντας τη σχέση:

    \[\sigma\upsilon\nu(\widehat{\vec{\delta_{1}}, \vec{\delta}_{2}}) = \frac{\vec{\delta_{1}} \cdot \vec{\delta_{2}}}{\lvert\vec{\delta_{1}}\rvert \lvert \vec{\delta_{2}\rvert}}.\]

\bullet Αν \sigma\upsilon\nu(\widehat{\vec{\delta_{1}}, \vec{\delta}_{2}}) > 0, τότε \omega < 90^{\circ} και η ζητούμενη γωνία είναι η:
Συνέχεια ανάγνωσης ΓΩΝΙΑ ΔΥΟ ΕΥΘΕΙΩΝ

ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΑΝΤΙΣΤΡΟΦΟΥ