ΣΥΝΑΡΤΗΣΗ 1-1 ΚΑΙ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ

ΣΥΝΑΡΤΗΣΗ 1-1 ΚΑΙ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ

Παράδειγμα.1
Αν η συνάρτηση f:\mathbb{R}\to \mathbb{R} είναι και 1-1 και για κάθε x\in \mathbb{R} ισχύει \Big(f \circ f\Big)(x+2)=f(3x-4), να δειχθεί ότι

    \[f(x)=3x-10.\]

Συνέχεια ανάγνωσης ΣΥΝΑΡΤΗΣΗ 1-1 ΚΑΙ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ 1-1 ΚΑΙ ΕΞΙΣΩΣΕΙΣ

ΣΥΝΑΡΤΗΣΕΙΣ 1-1 ΚΑΙ ΕΞΙΣΩΣΕΙΣ

Μια εξίσωση που δεν λύνεται με κάποια γνωστή μέθοδο, μπορεί να λυθεί ως εξής:

  • Μεταφέρουμε όλους τους όρους στο πρώτο μέλος.
  • Θέτουμε το πρώτο μέλος ίσο με f(x), οπότε η εξίσωση έχει τη μορφή f(x)=0
  • Αποδεικνύουμε ότι η f είναι 1-1.
  • Βρίσκουμε με δοκιμές μία ρίζα x_{0} της εξίσωσης f(x)=0
  • Η εξίσωση γίνεται

        \begin{align*} &f(x)=0 \Leftrightarrow\\ &f(x)=f(x_{0}) \stackrel{1-1}{\Leftrightarrow} \\ &x=x_{0} \end{align*}

Συνέχεια ανάγνωσης ΣΥΝΑΡΤΗΣΕΙΣ 1-1 ΚΑΙ ΕΞΙΣΩΣΕΙΣ

ΑΠΟΔΕΙΞΗ ΣΥΝΑΡΤΗΣΗΣ 1-1 ΚΑΙ ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ

ΑΠΟΔΕΙΞΗ ΣΥΝΑΡΤΗΣΗΣ 1-1 ΚΑΙ ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ

  • Αν μια συνάρτηση f είναι γνησίως μονότονη τότε η συνάρτηση f είναι και 1-1. Το αντίστροφο δεν ισχύει.
  • Αν για μία συνάρτηση f διαπιστώσουμε ότι είναι άρτια ή περιοδική ή ότι για δύο διαφορετικές τιμές του x π.χ x_{1},x_{2} είναι f(x_{1})=f(x_{2}) τότε η συνάρτηση δεν είναι 1-1 αφου θα έχουμε x_{1}\neq x_{2} \Rightarrow f(x_{1})=f(x_{2}).
  • Συνέχεια ανάγνωσης ΑΠΟΔΕΙΞΗ ΣΥΝΑΡΤΗΣΗΣ 1-1 ΚΑΙ ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ

    ΣΥΝΑΡΤΗΣΗ 1-1

    ΟΡΙΣΜΟΣ
    Μια συνάρτηση f:A \to \mathbb{R} λέγεται συνάρτηση 1-1, όταν για οποιαδήποτε x_{1}, x_{2} \in A ισχύει η συνεπαγωγή:

        \[x_{1}\neq x_{2} \Rightarrow f(x_{1}) \neq f(x_{2}).\]

    ισοδύναμος ορισμός
    Μια συνάρτηση f:A \to \mathbb{R} λέγεται συνάρτηση 1-1, όταν για οποιαδήποτε x_{1}, x_{2} \in A ισχύει η συνεπαγωγή:

        \[f(x_{1})=f(x_{2}) \Rightarrow x_{1}=x_{2}.\]

    Συνέχεια ανάγνωσης ΣΥΝΑΡΤΗΣΗ 1-1

    ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ

    ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ

    Για την απόδειξη ανισοτητων με τη μέθοδο της μονοτονίας ακολουθούμε τα παρακάτω βήματα:

  • Διαχωρίζουμε τους όρους στα δύο μέλη έτσι ώστε σε κάθε μέλος να υπάρχει η ίδια παράμετρος.
  • Παρατηρούμε αν ορίζεται η ίδια συνάρτηση και στα δύο μέλη και η μόνη διαφορά τους είναι η διαφορετική παράμετρος.
  • Θεωρουμε την παραπάνω συνάρτηση ως προς f(x) και την μελετάμε ως προς τη μονοτονία.
  • Εφαρμόζουμε τον ορισμο της μονοτονίας για τις περιπτώσεις της γνησίως αύξουσας και γνησίως φθίνουσας συνάρτησης, αντίστοιχα.
  • Συνέχεια ανάγνωσης ΟΡΙΣΜΟΣ ΜΟΝΟΤΟΝΙΑΣ ΚΑΙ ΑΠΟΔΕΙΞΗ ΑΝΙΣΟΤΗΤΩΝ

    ΣΥΝΑΡΤΗΣΙΑΚΗ ΣΧΕΣΗ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

    ΣΥΝΑΡΤΗΣΙΑΚΗ ΣΧΕΣΗ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

    Για συναρτησεις δύο μεταβλητων της μορφής,

        \[f(x+y),\]

    τις αντιμετωπίζουμε με μία απο τις παρακάτω αντικαταστάσεις:

    • όπου x και y το 0.
    • όπου y το -x.
    • όπου x το y και αντιστρόφως.
    • όπου y το μηδέν οπότε έχουμε ισότητα μόνο ως προς x.

    Για συναρτησεις δύο μεταβλητων της μορφής,

        \[f(x\cdot y),\]

    Συνέχεια ανάγνωσης ΣΥΝΑΡΤΗΣΙΑΚΗ ΣΧΕΣΗ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ